Effect of antibiotic batumin on the biofilm formation in staphylococci

1Churkina, LN, 2Vaneechoutte, M, 3Perunova, NB, 4Luitko, OB, 1Yaroshenko, LV
1D.K. Zabolotny Institute of Microbiology and Virology of the NAS of Ukraine, Kyiv
2Ghent University, Belgium
3Institute of Cellular and Intracellular Symbiosis Ural Branch of the RAS, Orenburg, Russian Federation
4Institute of Traumatology and Orthopedics of the NAMS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 10:91-100
https://doi.org/10.15407/dopovidi2017.10.091
Section: Medicine
Language: Russian
Abstract: 

Antibiotic batumin produced by Pseudomonas batumici has shown high activity against the type and reference strains and clinical isolates of 30 different species of the genus Staphylococcus (including MRSA and SSCVs). Batumin activity against these bacteria was 0.25—0.5 μg/ml. Batumin influence upon the biofilm formation by representatives of genus Staphylococcus has been studied. Presence of 0.125 μg /ml of batumin in the medium decreased the biofilm formation in 85 % of studied strains. Antibiotic effectiveness depended on the stage of its formation. Entry of batumin into the medium simultaneously with the bacterial culture promoted a decrease of the biofilm formation in all studied strains of staphylococci. The formed biofilm was more resistant to antibiotic. Breach of process of biofilm formation under the batumin influence was confirmed by the population analysis of studied staphylococci strains.

Keywords: batumin, biofilm formation, SSCVs, staphylococci
References: 
  1. Frank, K. L., Reichert, E. J., Patel, R. & Piper, K. E. (2007). In vitro effects of antimicrobial agents on planktonik and bilfilm forms of Stapylococcus lugdunensis clinical isolates. Antimicrob. Agents Chemother., 51, pp. 888-895. https://doi.org/10.1128/AAC.01052-06
  2. Kiprianova, E. A., Klochko, V. V., Zelena, L. B., Churkina, L. N. & Avdeeva, L. V. (2011). Pseudomonas batumici sp. nov., the antibiotic-producing bacteria isolated from soil of the Caucasus Black Sea coast. Microbiol. J., 73, No. 5, pp. 3-8.
  3. Churkina, L., Kiprianova, E., Bidnenko, S., Marchenko, K. & Artysyuk, E. (2009). Antibiotic batumin for diagnostics of staphylococci and treatment of Staphylococcus aureus nasal carriage. Lik Sprava, No. 1-2, pp. 61-67.
  4. McNamara, P. J. & Proctor, R. A. (2000). Staphylococcus aureus small colony variants, electron transport and persistent infections. Int. J. Antimicrob. Agents., 14, pp. 117-122. https://doi.org/10.1016/S0924-8579(99)00170-3
  5. Bukharin, O. V., Churkina, L. N., Perunova, N. B., Ivanova, E. V., Novikova, I. V., Avdeeva, L. V. & Yaroshenko, L. V. (2012). Influence of antistaphylococcus antiobiotic batumin on microorganism biofilm formation. Zh. Mikrobiol., Epidemiol., Immunobiol., No. 2, pp. 8-12 (in Russian).
  6. Boutiba-Ben Boubaker, I., Ben Abbes, R., Ben Abdallah, H., Mamlouk, K., Mahjoubi, F., Kammoun, A., Hammami, A. & Ben Redjeb, S. (2004). Evaluation of a cefoxitin disk diffusion test for the routine detection of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect., 10, No. 8, pp. 762-765. https://doi.org/10.1111/j.1469-0691.2004.00919.x
  7. Vaneechoutte, M., Boerlin, P., Tichy, H. V., Bannerman, E., Jäger, B. & Bille, J. (1998). Comparison of PCRbased DNA fingerprinting techniques for the identification of Listeria species and their use for atypical Listeria isolates. Int. J. Syst. Bacteriol., 48, pp. 127-139. https://doi.org/10.1099/00207713-48-1-127
  8. Churkina, L. N., Bidnenko, S. I., Lopes dos Santos Santiago, G., Vaneechoutte, M., Avdeeva, L. V., Lutko, O. B.
  9. & Oserjanskaja, N. M. (2012). Application of the antibiotic batumin for accurate and rapid identification of staphylococcal small colony variants. BMC Res. Notes., 5, pp. 374-378. https://doi.org/10.1186/1756-0500-5-374
  10. Vandepitte, J., Engback, K., Piot, P. & Heuck, C. (1991). Basic Laboratory Procedures in Clinical Bacteriology. Geneva: WHO Library.
  11. Clinical and Laboratory Standards Institute. (2005). Performance standards for antimicrobial susceptibility testing: fifteenths informational supplement. NCCLS document M 100 – S 15. Wayne, PA, USA.
  12. O'Tool, G. A., Kaplan, A. N. & Kolter, R. (2000). Biofilm formation as microbial development. An. Rev. Microbiol., 4, pp. 49-76. https://doi.org/10.1146/annurev.micro.54.1.49
  13. Bidnenko, S. I., Lutko, O. B., Oserjanskaja, N. M. & Churkina, L. N. (2010). Microflora of periprosthetic tissues according to aseptic instability of hipendoprosthesis and features of its sensitivity to antibiotics. Biomed. Biosocial Anthropol., 15, pp. 87-91 (in Ukrainian).
  14. Lewis, T., Chaudhry, R., Nightingale, P., Lambert, P. & Das, I. (2010). Methicillin-resistant Staphylococcus aureus bacteremia: epidemiology, outcome, and laboratory characteristics in a tertiary referral center in the UK. Int. J. Infect. Dis., 15, pp. 131-135. https://doi.org/10.1016/j.ijid.2010.09.013
  15. Churkina, L. N. , Bidnenko, S. I., Makushenko, A. S., Vaneechoutte, M., Luitko, O. B., Ozeryanskaya, N. M.
  16. & Avdeeva, L. V. (2010). Characteristics of atypical forms of staphylococci (SCVs), isolated from patients with osteomielitis. Antibiotiki i himioterapiya, 55, No. 5-6, pp. 36-40 (in Russian).
  17. Lee, V. E. & O'Neill, A. J. (2016). Batumin does not exert its antistaphylococcal effect through inhibition of aminoacyl-tRNA synthetaseInt enzymes. J. Antimicrob. Agents., 49, Iss. 1, pp. 121-122.