Deviation of a set of trajectories from the state of equilibrium

1Martynyuk, AA
1S.P. Timoshenko Institute of Mechanics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 10:10-17
Section: Mathematics
Language: Russian

Estimates of the deviation of a set of trajectories from an equilibrium state are obtained for a family of differential equations. These estimates can be applied to the study of the stability of motion like the case of systems of ordinary diffe rential equatians.

Keywords: deviation of trajectories, set of equations, state of equilibrium
  1. Babenko, E. A. & Martynyuk, A. A. (2016). On stabilization of motion of affine systems. Int. Appl. Mech., 52, No. 4, pp. 100—108.
  2. Bellman, R. (1953). Stability Theory of Differential Equations. New York: McGraw-Hill Book Company.
  3. Lovartassi, Y., El Mazoudi, El. H. & Elalami, N. (2012). A new generalization of lemma Gronwall–Bellman. Appl. Math. Sci. 6, No. 13, pp. 621—628.
  4. Lakshmikantham, V., Leela, S. & Devi, V. (2005). Theory of Set Differential Equations in Metric Space. Cambridge: Cambridge Scientific Publishers.
  5. Martynyuk, A. A. (2015). Novel bounds for solutions of nonlinear differential equations. Applied Math., 6, pp. 182—194.
  6. Martynyuk, A. A., Babenko, E. A. (2016). Finite time stability of uncertain affine systems. Math. Eng. Sci. Aerospace, 7, No. 1, pp. 179—196.
  7. Martynyuk, A. A. & Martynyuk-Chernienko, Yu. A. (2012). Uncertain Dynamical Systems: Stability and Motion Control. Boca Raton: CRC Press, Taylor and Francis Group.
  8. N'Doye, I. (2011). Generalisation du lemme de Gronwall-Bellman pour la stabilisation des systemes fractionnaires. (PhD These). Nancy-Universite.