The stress concentration in an elastoplastic spherical shell with a number of identical circular holes

1Chernyshenko, IS, 1Rudenko, IB, 1Storozhuk, EA
1S.P. Timoshenko Institute of Mechanics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 10:41-47
https://doi.org/10.15407/dopovidi2017.10.041
Section: Mechaics
Language: Ukrainian
Abstract: 

The statement of periodic static problems for an elastoplastic spherical shell with a number of identical circular holes is given. A technique for the numerical solution of a given class of nonlinear problems is developed, based on the use of the method of additional stresses and the variational vector-difference method. The effect of plastic deformations and geometric parameters on the stress-strain state of a spherical shell with a number of holes under the action of a uniform internal pressure is investigated.

Keywords: a number of circular holes, plasticity, spherical shell, static load, variational vector-difference method
References: 
  1. Guz, A. N., Chernyshenko, I. S. & Shnerenko, K. I. (1970). Spherical bottoms weakened by holes. Kyiv: Naukova Dumka (in Russian).
  2. Guz, A. N., Chernyshenko, I. S., Chekhov, Val. N., Chekhov, Vik. N. & Shnerenko, K. I. (1980). Calculation methods shells. (vol. 1) Theory of thin shells weakened by holes. Kyiv: Naukova Dumka (in Russian).
  3. Guz, A. N. (1964). The solution of problems for shallow spherical shell in the case of multiply areas. Dokl. AN SSSR, 158, No. 16, pp. 1281-1284 (in Russian).
  4. Guz, A. N., Storozhuk, E. A. & Chernyshenko, I. S. (2004). Inelastic deformation of flexible spherical shells with two circular openings. Prikl. mekhanika, 40, No. 6, pp. 90-98 (in Russian). https://doi.org/10.1023/B:INAM.0000041395.63200.aa
  5. Storozhuk, E. A., Chernyshenko, I. S. & Rudenko, I. B. (2012). Elastoplastic state of spherical shells with cyclically symmetric circular holes. Prikl. mekhanika, 48, No. 5, pp. 102-111 (in Russian). https://doi.org/10.1007/s10778-012-0539-5
  6. Storozhuk, E. A., Chernyshenko, I. S. & Rudenko I. B. (2012). Influence of plastic deformation on the stress concentration in a multiply connected spherical shell. Problemy obchysliuvalnoi mekhaniky i mitsnosti konstruktsii, No. 18, pp. 183-188 (in Ukrainian).
  7. Zienkiewick, O. & Morgan, K. (1986). Finite Elements and Approximation. Moskow: Mir (in Russian).
  8. Maksimyuk, V. A., Storozhuk, E. A. & Chernyshenko, I. S. (2009). Using mesh-based methods to solve nonlinear problems of statics for thin shells. Prikl. mekhanika, 45, No. 1, pp. 41-70 (in Russian). https://doi.org/10.1007/s10778-009-0166-y