Assessment of the effect of carbon nanohorns on the microviscosity of membranes of erythrocytes and rat plasma proteins by the method of spin probes

1Kartel, NT, 1Ivanov, LV, 2Lyapunov, AN, 3Nardid, OA, 3Cherkashina, Ya.O, 4Gurova, OA, 5Ocotrub, AV
1O. O. Chuiko Institute of Surface Chemistry of the NAS of Ukraine, Kyiv
2State Scientific Institution "Institute for Single Crystals" of the NAS of Ukraine, Kharkiv
3Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv
4Nikolaev Institute of Inorganic Chemistry of the SB of RAS, Novosibirsk, Russia
5Nikolaev Institute of Inorganic Chemistry of the SB of RAS, Novosibirsk, Russia; Novosibirsk State University, Russia
Dopov. Nac. akad. nauk Ukr. 2017, 12:73-82
https://doi.org/10.15407/dopovidi2017.12.073
Section: Chemistry
Language: Russian
Abstract: 

By the method of spin probes, we have studied the effect of initial and oxidized carbon nanoshorns on the microviscosity of rat erythrocyte membranes and the viscosity of the water-containing plasma protein matrix. Introduction of nanohorns in a concentration of 100 μg/ml into erythrocyte suspension results in an increase in the membrane microviscosity within four hours (about 60 % effect), increasing the polarity of a microenvironment for lipophilic probes in the outer layer of membrane phospholipids, and a disorder of erythrocyte's membranes. Introduction of nanohorns in plasma leads to a slight reduction in the viscosity of water and the protein matrix, apparently, due to its partial destruction, especially macromolecules of serum albumin. Cytotoxicity of pristine and oxidized nanohorns evaluated by us is higher as compared to the nanoparticles of oxidized graphene, but is significantly lower than the carbon nanotubes, which are capable of dramatically increasing the microviscosity of membranes of erythrocytes and disrupting their integrity.

Keywords: anisotropy of SPR spectra, carbon nanochorns, cytotoxicity, method of spin probes, microviscosity of erythrocyte membranes, polarity of the microenvironment of a probe in the membrane, serum albumin
References: 
  1. Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F. & Takahashi, K. (1999). Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys.Lett., 309, Iss. 3-4, pp. 165-170. doi: https://doi.org/10.1016/S0009-2614(99)00642-9
  2. Murata, K., Kaneko, K., Kokai, F., Takahashi, K., Yudasaka, M. & Iijima, S. (2000). Pore structure of singlewall carbon nanohorn aggregates. Chem. Phys. Lett., 331, pp. 14-20. doi: https://doi.org/10.1016/S0009-2614(00)01152-0
  3. Piotrovsky, L.B. & Melik-Ogandzhanyan, R. G. (2011). Properties and biological potential of single-walled carbon nanohorns (SWCNH). FARMA, No. 1, pp. 120-128 (in Russian).
  4. Ajima, K., Yudasaka, M., Murakami, T., Maigné, A., Shiba, K. & Iijima, S. (2005). Carbon nanohorns as anticancer drug carriers. Mol. Pharm., 2, pp. 475-480. doi: https://doi.org/10.1021/mp0500566
  5. Liechtenstein, G. I. (1974). The method of spin labels in molecular biology. Moscow: Nauka (in Russian).
  6. Berliner, L. (Ed). (1979). The method of spin labels. Theory and applications. Moscow: Mir (in Russian).
  7. Kartel, N.T., Ivanov, L.V., Karachevtsev, V.A., Lyapunov, A.N., Nardid, O.A., Cherkashina, Ya.O., Leontiev, V.S. & Ivanov, A.Yu. (2017). Estimation of the interaction of oxidized graphene with rat's erythrocyte membranes and blood plasma proteins by the method of spin probes. Dopov. Nac. acad. nauk Ukr., No. 8, pp. 71-79 (in Russian). doi: https://doi.org/10.15407/dopovidi2017.08.071
  8. Moiseeva, N. N., Kravchenko, L. P., Semenchenko, A. A. & Petrenko, A. Yu. (2002). Effect of transplantation of hepatocytes subjected to hypothermic storage on liver regeneration in rats after partial hepatectomy. Probl. Cryobiol., No. 1, pp. 24-31 (in Russian).
  9. Okotrub, A. V., Shevtsov, Yu. V., Nasonova, L. I., Sinyakov, D. E., Chuvilin, A. L., Gutakovskiy, A. K. & Mazalov, L. N. (1996). Synthesis of monolayer closed carbon particles in an electric arc discharge. Inorganic
  10. materials, 32, No. 8, pp. 974-978.
  11. Gurova, O. A., Omelyanchuk, L. V., Dubatolova, T. D., Antohin, E. I., Eliseev, V. S., Yushina, I. V. & Okotrub, A. V. (2017). Synthesis and modification of the structure of carbon nanochannels for use in hyperthermia. J. Struct. Chem., 58, No. 6, pp. 1252-1259.
  12. Ivanov, L. V., Lyapunov, O. M., Kartel, M. T., Nardid, O. A., Okotrub, A. V., Kirilyuk, I. A. & Cherkashina, Ya. O. (2014). Delivery of spin probes by carbon nanotubes in erythrocytes and plasma of blood. Surface, Iss. 6, pp. 292-304.
  13. Kartel, M. T., Ivanov, L. V., Lyapunov, O. M., Nardid, O. A., Okotrub, A. V., Kirilyuk, I. A. & Cherkashina, Ya. O. (2015). Estimation of the effect of carbon nanotubes on the microviscosity of erythrocyte membranes by the spin probe method. Dopov. Nac. akad. nauk Ukr., No. 3, pp.114-121 (in Russian). doi: https://doi.org/10.15407/dopovidi2015.03.114
  14. Zhdanov, R.I. (1981). Paramagnetic models of biologically active compounds. Moscow: Nauka (in Russian).