Peculiarities of the accumulation and distribution of indolyl-3-acetic and abscisic acids in the organs of sporophyte of wild fern Polystichum aculeatum (L.) Roth. At different phenological phases of development

1Voytenko, LV, 1Kosakivska, IV
1M. G. Kholodny Institute of Botany of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 12:112-118
https://doi.org/10.15407/dopovidi2017.12.112
Section: Ecology
Language: Ukrainian
Abstract: 

By high-performance liquid chromatography-mass spectrometry, the accumulation and the distribution of indolyl-3-acetic (IAA) and abscisic (ABA) acids in the organs of sporophyte of wild fern Polystichum aculeatum (L.) Roth are first studied. The maximum content of endogenous IAA with domination of the free form recorded in fronds and rhizome of ferns in the phase of intensive growth, while the active accumulation of endogenous ABA in rhizome happened during the formation of sori. During the autumn vegetation, the conjugated form of ABA was dominated in fronds, whereas the content of IAA in rhizome was decreased.

Keywords: abscisic acid, indolyl-3-acetic acid, Polystichum aculeatum, sporophyte
References: 
  1. Enders, T. A. & Strader, L. C. (2015). Auxin activity: past, present, and future. Amer. J. Botany, 102, No. 2, pp.180-196. doi: https://doi.org/10.3732/ajb.1400285
  2. Spiess, G. M., Hausman, A., Yu, P., Cohen, J. D., Rampey, R. A. & Zolman, B. K. (2014). Auxin Input Pathway Disruptions Are Mitigated by Changes in Auxin Biosynthetic Gene Expression in Arabidopsis. Plant Physiol., 165, pp. 1092-1104. doi: https://doi.org/10.1104/pp.114.236026
  3. Voytenko, L. V. & Kosakivska, I. V. (2016). Polyfunctional phytohormone abscisic acid. Visnyk Kharkiv. nats. ahr. univ. Ser. Biology, Iss. 1, pp. 27-41 (in Ukrainian).
  4. Page, C. (2002). Ecological strategies in fern evolution: a neopteridological overview. Rev. Palaeobot. Palynol., 119, pp. 1-33. doi: https://doi.org/10.1016/S0034-6667(01)00127-0
  5. Kosakivska, I. V., Babenko, L. M., Shcherbatiuk, M. M., Vedenicheva, N. P. Voytenko, L. V. & Vasyuk, V. A. (2016). Phytohormones during growth and development of Polypodiophyta. Advances in Biology & Earth Sciences, 1, pp. 26-44.
  6. Voytenko, L. V., Likhnyovskiy, R. V. & Kosakivska, I. V. (2016). Peculiarities of accumulation and localization of indole-3-acetic acid in organs of Salvinia natans (L.) All. sporophyte at the different phenological phases of development. Studia Biologica, 10, No. 3-4, pp. 91-106 (in Ukainian).
  7. Sytnik, K. M., Musatenko, L. I., Vasyuk, V. A., Vedenicheva, N. P., Generalova, B. M. & Nesterova, A. N. (2003). Hormonal complex of plants and fungi. Kiev: Akademperiodyka (in Ukainian).
  8. Kotuhov, Yu. A. (1974). Metodika fenonablyudeniy za paporotnikami semeystva Polypodiaceae. Byull. Gl. bot. sada, 94, pp.10-18 (in Russian).
  9. Didukh, Ya., Plyuta, P., Protopopova, V., Ermolenko, V., Korotchenko, I., Karkutsiev, G. & Burda, R. (2000). In Didukh, Ya. P. (Ed.). Ecoflora of Ukraine. Vol. 1. Kiev: Phytosotsiotsentr (in Ukainian).
  10. Simm, S., Scharf, K.-D., Jegadeesan, S., Chiusano, M. L., Firon, N. & Schleiff, E. (2016). Survey of genes involved in biosynthesis, transport, and signaling of phytohormones with focus on Solanum lycopersicum. Bioinform. Biol. Insights, 10, pp.185-207. doi: https://doi.org/10.4137/BBI.S38425
  11. Muday, G. K. & DeLong, A. (2001). Polar auxin transport: controlling where and how much. Trends Plant Sci., 6, pp. 535-542. doi: https://doi.org/10.1016/S1360-1385(01)02101-X
  12. Gusta, L., Trischuk, R. & Weiser, C. J. (2005). Plant cold acclimation: the role of abscisic acid. J. Plant Growth Regul., 24, pp. 308-318. doi: https://doi.org/10.1007/s00344-005-0079-x
  13. Verslues, P. E. & Zhu, J.-K. (2005). Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem. Soc. Trans., 33, pp. 375-379. doi: https://doi.org/10.1042/BST0330375
  14. López-Carbonell, M., Gabasa, M. & Jáuregui, O. (2009). Enhanced determination of abscisic acid (ABA) and abscisic acid glucose ester (ABA–GE) in Cistus albidus plants by liquid chromatography–mass spectrometry in tandem mode. Plant Physiol. Biochem., 47, pp. 256-261. doi: https://doi.org/10.1016/j.plaphy.2008.12.016
  15. Osakabe, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. & Tran, L. S. (2014). ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol., 202, pp. 35-49. doi: https://doi.org/10.1111/nph.12613