On the Kiguradze theorem for linear boundary-value problems

1Mikhailets, VA, 2Pelekhata, OB, 2Reva, NV
1Institute of Mathematics of the NAS of Ukraine, Kyiv
2NTU of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
Dopov. Nac. akad. nauk Ukr. 2017, 12:8-13
https://doi.org/10.15407/dopovidi2017.12.008
Section: Mathematics
Language: Russian
Abstract: 

We investigate the limiting behavior of solutions of inhomogeneous boundary-value problems for the systems of linear ordinary differential equations on a finite interval. A generalization of the Kiguradze theorem (1987) on the passage to the limit is obtained.

Keywords: linear boundary-value problem, passage to the limit, system of ordinary differential equations
References: 
  1. Reid, W. T. (1967). Some limit theorems for ordinary differential systems. J. Diff. Equat. 3, No. 3, pp. 423-439. doi: https://doi.org/10.1016/0022-0396(67)90042-3
  2. Opial, Z. (1967). Continuous parameter dependence in linear systems of differential equations. J. Diff. Equat. 3, pp. 571-579. doi: https://doi.org/10.1016/0022-0396(67)90017-4
  3. Levin, A. Yu. (1967). Passage to the limit for nonsingular systems X⋅ = An(t)X. Sov. Math. Dokl. 176, No. 4, pp. 774-777.
  4. Levin, A. Yu. (1973). Problems of the theory of ordinary differential equations. I. Vestn. Yaroslav. Univ. Iss. 5, pp. 105-132 (Russian).
  5. Nguyen, Tkhe Hoan. (1993). Dependence of the solutions of a linear system of differential equations on a parameter. Differential Equations. 29, No. 6, pp. 830-835.
  6. Kiguradze, I. T. (1975). Some singular boundary value problems for ordinary differential equations. Tbilisi: Izdat. Tbilis. Univ. (Russian).
  7. Kiguradze, I. T. (1988). Boundary-value problems for systems of ordinary differential equations. J. Soviet Math. 43, No. 2, pp. 2259-2339. doi: https://doi.org/10.1007/BF01100360
  8. Kodliuk, T. I., Mikhailets, V. A. & Reva, N. V. (2013). Limit theorems for one-dimensional boundary-value problems. Ukr. Math. J. 65, No. 1, pp. 77-90. doi: https://doi.org/10.1007/s11253-013-0766-x
  9. Gnyp, E. V., Kodliuk, T. I. & Mikhailets, V. A. (2015). Fredholm boundary-value problems with parameter in Sobolev spaces. Ukr. Math. J. 67, No. 5, pp. 658-667. doi: https://doi.org/10.1007/s11253-015-1105-1
  10. Mikhailets, V. A., Murach, A. A. & Soldatov, V. A. (2016). Continuity in a parameter of solutions to generic boun dary-value problems. Electron. J. Qual. Theory Differ. Equat. No. 87, pp. 1-16. doi: https://doi.org/10.14232/ejqtde.2016.1.87