High magnetoelectric effect at room temperature in nanograined ceramics of multiferroic-perovskites with general formula Pb(B′B′′)O3

1Glinchuk, MD, 1Yurchenko, LP
1I. M. Frantsevich Institute for Problems of Materials Sciences of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 12:45-51
https://doi.org/10.15407/dopovidi2017.12.045
Section: Materials Science
Language: Ukrainian
Abstract: 

Using the Landau—Ginzburg—Devonshire approach, the theoretical modeling of the magnetoelectric effect in nanograined ceramics of multiferroic-perovskites is carried out. We consider ferromagnetic ferroelectrics Pb(Fe1/2Ta1/2)x(Zr1/2Ti1/2)1-xO3 та Pb(Fe1/2Nb1/2)x(Zr1/2Ti1/2)1-xO3, which have pronounced magneto electric properties at temperatures higher than 100 K, including the high magnetoelectric effect at room temperature. It is shown that the coefficient of magnetoelectric effect can increase by 1–3 orders due to size effects in nanoceramics.

Keywords: magnetoelectric effect, modeling of properties, multiferroics, nanograined ceramics
References: 
  1. Scott, J. F. (2012). Applications of magnetoelectrics. J. Mater. Chem., 22, pp. 4567-4574. doi: https://doi.org/10.1039/c2jm16137k
  2. Sanchez, D. A., Ortega, N., Kumar, A., Roque-Malherbe, R., Polanco, R., Scott, J. F. & Katiyar, R. S. (2011). Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate–lead zirconate titanate (PFT/PZT). AIP Adv., 1, 042169. doi: https://doi.org/10.1063/1.3670361
  3. Evans, D. M., Schilling, A., Kumar, A., Sanchez, D., Ortega, N., Arredondo, M., Katiyar, R. S., Gregg, J. M. & Scott, J. F. (2013). Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat. Commun., 4, 1534. doi: https://doi.org/10.1038/ncomms2548
  4. Sanchez, D. A., Ortega, N., Kumar, A., Sreenivasulu, G., Katiyar, R. S., Scott, J. F., Evans, D. M., Arredondo-Arechavala, M., Schilling, A. & Gregg, J. M. (2013). Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe,M)x(Zr,Ti)(1 – x)O3 [M = Ta, Nb]. J. Appl. Phys., 113, 074105. doi: https://doi.org/10.1063/1.4790317
  5. Evans, D. M., Schilling, A., Kumar, A., Sanchez, D., Ortega, N., Katiyar, R. S., Scott, J. F. & Gregg, J. M. (2014). Switching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 single-crystal lamellae. Phil. Trans. R. Soc. A, 372, 20120450. doi: https://doi.org/10.1098/rsta.2012.0450
  6. Mishra, R. K., Choudhary, R. N. P. & Banerjee, A. (2010). Bulk permittivity, low frequency relaxation and the magnetic properties of Pb(Fe1/2Nb1/2)O3 ceramics. J. Phys.: Condens. Matter., 22, Iss. 2, 025901. doi: https://doi.org/10.1088/0953-8984/22/2/025901
  7. Kleemann, W., Shvartsman, V. V., Borisov, P. & Kania, A. (2010). Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3. Phys. Rev. Lett., 105, Iss. 25, 257202. doi: https://doi.org/10.1103/PhysRevLett.105.257202
  8. Glinchuk, M. D., Eliseev, E. A. & Morozovska, A. N. (2014). New room temperature multiferroics on the base of single-phase nanostructured perovskites. J. Appl. Phys., 116, 054101. doi: https://doi.org/10.1063/1.4891459
  9. Glinchuk, M. D., Eliseev, E. A. & Morozovska, A. N. (2016). Theoretical description of anomalous proper ties of novel room temperature multiferroics Pb(Fe1/2Ta1/2)x(Zr0.53Ti0.47)1 – xO3 and Pb(Fe1/2Nb1/2)x(Zr0.53Ti0.47)1 – xO3. J. Appl. Phys., 119, 024102. doi: https://doi.org/10.1063/1.4939584
  10. Glinchuk, M. D., Morozovska, A. N., Eliseev, E. A. & Blinc, R. (2009). Misfit strain induced magnetoelectric coupling in thin ferroic films. J. Appl. Phys., 105, 084108. doi: https://doi.org/10.1063/1.3108483
  11. Glinchuk, M. D., Eliseev, E. A., Morozovska, A. N. & Blinc, R. (2008). Giant magnetic effect induced by intrinsic surface stress in ferroic nanorods. Phys. Rev. B, 77, 024106. doi: https://doi.org/10.1103/PhysRevB.77.024106
  12. Eliseev, E. A., Glinchuk, M. D., Khist, V., Skorokhod, V. V., Blinc, R. & Morozovska, A. N. (2011). Linear magnetoelectric coupling and ferroelectricity induced by the flexomagnetic effect in ferroics. Phys. Rev. B, 84, 174112. doi: https://doi.org/10.1103/PhysRevB.84.174112