Ozone-induced chemiluminescence of uranine in the presence of blood plasma

1Zinchenko, VD, 1Goriacha, IP, 1Golovina, KN, Kiriyenko, AN, Topchiy, II
1Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv
Dopov. Nac. akad. nauk Ukr. 2017, 3:78-84
https://doi.org/10.15407/dopovidi2017.03.078
Section: Biology
Language: Russian
Abstract: 

Chemiluminescent response of the "uranine-blood plasma" system to the effect of ozone consists of two parts, i.e. a gentle flash lasting about 5 seconds and the afterglow, falling within 20-30 min. The short burst is explained by chemiluminescence at the direct oxidation of uranine with ozone, and the long afterglow is done by the energy transfer to uranine from other reactive species. The action of hydrogen peroxide or a hydroxyl radical on the system in the process of afterglow does not influence its intensity. Hence, the conclusion is made that the transfer of energy to uranine is derived from singlet oxygen. However, it does not rule out the possibility of the afterglow by the triggering of other reactions under the influence of ozone, whose mechanism requires a further research.

Keywords: blood plasma, chemiluminescence, fluorescein, ozone, uranine
References: 
  1. Togashi, D. M. & Ryder, A. G. (2010). Assessing protein-surface interactions with a series of multi-labeled BSA using fluorescence lifetime microscopy and Förster energy resonance. Biophys. Chem., 152, No. 1-3, pp. 55-64.
  2. Stoltenburg, R., Schubert, T. & Strehlitz, B. (2015). In vitro selection and interaction studies of a DNA aptamer targeting protein A. PLoS One, 10, No. 7, e0134403.
  3. Nagano, T. (2010). Development of fluorescent probes for bioimaging applications. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci., 86, pp. 837-846.
  4. Tanaka, K., Miura, T., Umerawa, N., Urano Y., Kikuchi, K., Higuchi, T. & Nagano, T. (2001). Rational design of fluorescein-based fluorescence probes. Mechanism-Based design of a maximum fluorescence probe for singlet oxygen. J. Am. Chem. Soc., 123, pp. 2530-2536.
  5. Zinchenko, V. D., Golota, V. I., Sukhomlin, E. A. et al. (2005). Laboratory equipment for the application of ozone technology in biology and medicine. Problemy kriobiologii, 15, No. 4, pp. 712-718 (in Russian).
  6. Lunin, V.V., Popovich, M.P., & Tkachenko, S.N. (1998). Physical chemistry of ozone. Moscow: Izd-vo Mosk. Univ. (in Russian).
  7. Pat. 72111 UA, IPC G01n21/76. Bioluminometer, Zinchenko, V. D., Horiacha, I. P., Hovor, I. V., Publ. 10.08.2012 (in Ukrainian).
  8. Bowman, R. L. & Alexander, N. (1966). Ozone-induced chemiluminescence of organic compounds. Science, 154, pp. 1454-1456.
  9. Nikokavouras, J., Vassilopoulos, G. & Perry, A. (1975). Some aspects of ozone-induced chemiluminescence of xanthene dyes. III. Stoichiometry and the chemiluminescence spectrum. Chim. Chron., New Ser., 4, pp. 23-26.
  10. Karniya, I. & Kate, S. (1970). Studies of the chemiluminescence of several xanthene dyes. V. Blue emission from an excited state of a reaction product. Bull. Chem. Soc. Jpn., 43, pp. 1287-1292.
  11. Segawa, T., Ishikawa, H., Kamidate, T. & Watanable, H. (1994). Micelle-enhanced fluorescein chemiluminescence catalyzed by horseradish peroxidase for the determination of the hydrogen peroxide. Analyt. Sci., 10, pp. 589-593.
  12. Diaz, A. N., Garsial, J. A. G. & Lovillo, J. (1997). Enhancer Effect of fluorescein on the lumion-H2O2-horseradishperoxidase chemiluminescence: energy transfer process. J. Biolum. Chemilum., 12, pp. 309-314.
  13. Burguerra, J. L. & Townshend, A. (1980). Determination of ng/ml levels of sulphide by a chemiluminescencent reaction. Talanta, 27, pp. 309-314.
  14. Kamita, I. & Ivaki, R. (1966). Studies of the chemiluminescence of the several xantene dues. II. The chemiluminescence emission spectra of uranine and eosine. Bull. Chem. Soc. Jpn., 39, pp. 254-269.
  15. Kanoffsky, J. K. & Sima, P. (1991). Singlet oxygen production from the reactions of ozone with biological molecules. J. Biol. Chem., 266, No. 14, pp. 9039-9042.