Esterase activity of CF1 coupling factor isolated from spinach chloroplasts

TitleEsterase activity of CF1 coupling factor isolated from spinach chloroplasts
Publication TypeJournal Article
Year of Publication2017
AuthorsMykhailenko, NF, Semenikhin, AV, Khomochkin, AP, Zolotareva, EK
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2017.03.092
Issue3
SectionBiochemistry
Pagination92-98
Date Published3/2017
LanguageUkrainian
Abstract

It is shown that the isolated coupling factor CF1 (a catalytic part of the ATP synthase complex of chloroplasts) is able to catalyze the hydrolysis of p-nitrophenyl ester of acetic acid. Specific inhibitors of carbonic anhydrase, acetazolamide (AA), and ethoxyzolamide (EA) in the concentration range of 1 to 100 μM modified the esterase activity of the enzyme. AA at low concentrations (less than 5 μM) stimulated and in the range of 25-75 μM inhibited the esterase activity of CF1·1-75 μM EA caused the considerable changes in the esterase activity of CF1· AA or EA affected also the latent ATPase activity of the enzyme: in the concentration 1-25 μM activated and 30-100 μM inhibited ATP hydrolysis. These results suggest that the observed esterase activity of CF1 is related to the carbonic anhydrase function of the coupling factor and is probably necessary for the proton transfer coupled with the reactions of ATP synthesis or hydrolysis.

Keywordscarbonic anhydrase, CF1-ATPase, chloroplasts, esterase, sulfanilamide inhibitors
References: 
  1. Tiedge, H., Lünsdorf, H., Schäfer, G. & Schairer, H. U. (1985). Subunit stoichiometry and juxtaposition of the photosynthetic coupling factor 1: Immunoelectron microscopy using monoclonal antibodies. Proc. Natl. Acad. Sci. USA, 82, No. 23, pp. 7874-7878. https://doi.org/10.1073/pnas.82.23.7874
  2. Malyan, A. N. (2013). Noncatalytic nucleotide binding sites: Properties and mechanism of involvement in ATP synthase activity regulation. Biochemistry (Moscow), 78, No. 13, pp. 1512-1523. https://doi.org/10.1134/S0006297913130099
  3. Groth, G. & Strotmann, H. (1999). New results about structure, function and regulation of the chloroplast ATP synthase (CF0CF1). Phyiol. Plant., 106, No. 1, pp. 142-148. https://doi.org/10.1034/j.1399-3054.1999.106120.x
  4. Semenihin, A. V. & Zolotareva, O. K. (2015). Carbonic anhydrase activity of integral-functional complexes of thylakoid membranes of spinach chloroplasts. Ukr. Biochem. J., 87, Iss. 3, pp. 47-56. https://doi.org/10.15407/ubj87.03.047
  5. Khomochkin, A. P., Semenikhin, A. V. & Zolotareva, E. K. (2016). Effect of carbonic anhydrase inhibitors on enzymatic activity of isolated thylakoid CF1 ATPase. Dopov. Nac. akad. nauk Ukr., No. 1, pp. 92-98 (in Ukrainian). doi: https://doi.org/10.15407/dopovidi2016.01.092
  6. Onoiko, E. V., Polishchuck, A. V. & Zolotareva, E. K. (2010). The stimulation of photophosphorylation in isolated spinach chloroplasts by exogenous bicarbonate: the role of carbonic anhydrase. Dopov. Nac. akad. nauk Ukr., No. 10, pp. 160-165 (in Russian).
  7. Moroney, J. V., Bartlett, S. G. & Samuelsson, G. (2001). Carbonic anhydrases in plants and algae. Plant Cell Environ., 24, No. 2, pp. 141-153. https://doi.org/10.1111/j.1365-3040.2001.00669.x
  8. Fabre, N., Reiter, I. M., Becuwe-Linka, N., Genty, B. & Rumeau, D. (2007). Characterization and expression analysis of genes encoding α and β carbonic anhydrases in Arabidopsis. Plant Cell Environ., 30, No. 5, pp. 617-629. https://doi.org/10.1111/j.1365-3040.2007.01651.x
  9. Rudenko, N.N., Ignatova, L.K., Fedorchuk, T.P. & Ivanov, B. N. (2015). Carbonic anhydrases in photosynthetic cells of higher plants. Biochemistry (Moscow), 80, No. 6, pp. 674-687. https://doi.org/10.1134/S0006297915060048
  10. Winum, J.-Y., Colinas, P. (2015). Carbonic Anhydrases as Esterases and Their Biotechnological Applications. In Supuran, C. T., De Simone, G (Eds.) From Theory to Medical and Industrial Applications (pp. 361-371), Amsterdam: Elsevier. doi: https://doi.org/10.1016/b978-0-444-63258-6.00021-4
  11. Yaguzhinskiy, L. S., Gudz, T. I. & Verkhovskiy, A. B (1978). Esterase activity of oligomycin sensitive ATPase of mitochondria. Biokhimiia, 43 (No. 11), pp. 2058-2063 (in Russian).
  12. Zakharov, S. D., Sytnik, S. K., Malian, A. N. & Makarov, A. D. (1978). solation and svoysva SF1-ATPase with a modified structure submolecular. Biokhimiia, 43, No. 5, pp. 887-891 (in Russian).
  13. Nikulina, G. I. (1965). Review of methods for the colorimetric determination of phosphorus on the formation of molybdenum blue. Moscow, Leningrad: Nauka, 1965 (in Russian).
  14. Efimtseva, E. A. & Chelpanova, T. I. (2007). Esterase activity in the tissues of various parts of the gastrointestinal tract of the reindeer. Selskokhozyaistvennaya biologiya, No. 6, pp. 77-80 (in Russian).
  15. Bender, M. L., Kezdy, F. J. & Wedler, F. C. (1967). Alpha-Chymotrypsin: Enzyme concentration and kinetics. J. Chem. Educ., 44, No. 2, pp. 84-88. https://doi.org/10.1021/ed044p84