On the transmutation of the Lions operator to the simplest form

1Linchuk, Yu.S
1Yuriy Fedkovych Chernivtsi National University
Dopov. Nac. akad. nauk Ukr. 2017, 3:8-13
Section: Mathematics
Language: Ukrainian
Let $\alpha \in \mathbb{C}, m \in N, m \geqslant 2$, and $L_{\alpha } = \frac{d^{m}}{dz^{m}} + \frac{\alpha }{z}\frac{d^{m-1}}{dz^{m-1}}$. We investigate the conditions of equivalence of the Lions operator  $L_{\alpha }$ to simpler operators in subspaces of the spaces of functions analytic in domains. We establish the hypercyclicity and the chaoticity of a class of operators.
Keywords: chaotic operator, equivalent operators, hypercyclic operator, Lions operator, spaces of analytic functions, transmutation operators
  1. Lions, J.L. (1956) Colloques internationaux du CNRS. Vol. 71. La théorie des équations aux dérivées partielles. Nancy, pp. 125-137.
  2. Trimeche, K. (1988). Mean-periodic function associated with a differential operator in the complex plane. In Mazhar, S. M., Hamoui, A., Faour, N. S. (Eds.). Mathematical analysis and its applications: Proceedings of the International Conference on Mathematical Analysis and Its Applications, Kuwait, 1985 (pp. 385-4002), Oxford: Pergamon Press.
  3. Trimeche, K. (1988). Transmutation operators and mean-periodic functions associated with differential operators. London: Harwood Academ. Publ.
  4. Delsarte, J. & Lions, J. L. (1957). Transmutatuions d'operateurs differentieles dans le domaine complexe. Comment. Math. Helv., 32, No. 2, pp. 113-128.
  5. Dimovski, I. H. (1990). Convolutional Calculus. Dordrecht: Kluwer.
  6. Berezovskaya, G. M. & Berezovskii, N. I. (1984). Description of the isomorphisms of spaces of holomorphic functions that commute with powers of a multiplication operator. Ukr. Math. J., 36, No. 5, pp. 456-459.
  7. Linchuk, Yu. S. (2014). On a class of diagonal operators in the spaces of analytic functions and its application. Reports of the National Academy of Sciences of Ukraine, 3: 25-28 (in Ukrainian).
  8. Linchuk, Yu. S. (2014). Generalized Dunkl – Opdam operator and its properties in the spaces of analytic functions in domains. Mat. metody ta fiz.-mekh. polia, 57, No. 4, pp. 7-17 (in Ukrainian).
  9. Godefroy, G. & Shapiro, J. H. (1991). Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal., 98, No. 2, pp. 229-269.