Finite mean oscillation on Finsler manifolds

Afanas'eva, ES
Dopov. Nac. akad. nauk Ukr. 2017, 3:14-17
https://doi.org/10.15407/dopovidi2017.03.014
Section: Mathematics
Language: English
Abstract: 

We study functions of the finite mean oscillation in Finsler spaces with respect to the boundary behavior of ring Q-homeomorphisms.

Keywords: Finsler manifolds, FMO class functions, ring Q-homeomorphisms
References: 
  1. Afanas'eva, E. S. (2016). Boundary behavior of Q-homeomorphisms on Finsler spaces. Ukr. Math. Bull., 214, No. 2, pp. 161-171. https://doi.org/10.1007/s10958-016-2766-5
  2. Afanas'eva, E. S. (2012). Boundary behavior of ring Q-homeomorphisms on Riemannian manifolds. Ukr. Math. J., 63, No. 10, pp. 1479-1493. doi: https://doi.org/10.1007/s11253-012-0594-4
  3. Kuratowski, K. (1968). Topology. Vol. II. New York, London: Acad. Press.
  4. Dymchenko, Yu. V. (2014). A Relation Between the Condenser Capacity and the Module of Separating Surfaces in Finsler Spaces. J. Math. Sci., 200, Iss. 5, pp. 559-567. https://doi.org/10.1007/s10958-014-1944-6
  5. Cheng, X., & Shen, Z. (2012). Finsler geometry. An approach via Randers spaces. Heidelberg: Springer. https://doi.org/10.1007/978-3-642-24888-7
  6. Bogoslovsky, G. Yu. (2009). Finsler geometry and the theory of relativity. Sb. nauch. trudov RNOTS "Logos", Iss. 4, pp. 169-177 (in Russian).
  7. Rutz, S. F., & Paiva, F. M. (2000). Gravity in Finsler spaces. Finslerian geometries. Fundamental Theories of Physics. Vol. 109, pp. 223-244. Dordrecht: Kluwer Acad. Publ. https://doi.org/10.1007/978-94-011-4235-9_19
  8. Dymchenko, Yu. V. (2009). Equality of the capacity and the modulus of a condenser in Finsler spaces, 85, Iss. 3, pp. 566-573. doi: https://doi.org/10.1134/S0001434609030274.
  9. Zhotikov, V. G. (2009). Finsler geometry (according to Wagner) and the equations of the motion in the relativistic dynamics. Proceedings XV Int. Sci. Meeting PIRT—2009, pp. 133-144. Moscow.
  10. Rund, H. (1959). The differential geometry of Finsler spaces. Die Grundlehren der Mathematischen Wissenschaften. Bd. 101. Berlin, Göttingen, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-51610-8
  11. Martio, O., Ryazanov, V., Srebro, U., & Yakubov, E. (2009). Moduli in Modern Mapping Theory. Springer Mono graphs in Mathematics. New York: Springer.