The study of the interaction of 5-(2-hydroxyphenyl)-1,2,4-polytriazolylacetic acid esters with uranyl ions

Vashchenko, OV, 1Khomenko, DM, 1Doroschuk, RO, Raspertova, IV, 1Lampeka, RD
1Taras Shevchenko National University of Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 3:56-62
https://doi.org/10.15407/dopovidi2017.03.056
Section: Chemistry
Language: Ukrainian
Abstract: 

For the first time, three new ligands — derivatives of 5-(2-hydroxyphenyl)-1,2,4-polytriazolylacetic acids — and the coordination compounds of uranyl ions on their basis have been synthesized. The obtained compounds are studied by means of IR and NMR spectroscopies. It is established that ethyl esters H3L1 and H4L2 interacting with uranyl ions form complexes of the corresponding carboxylic acids. The ester group of ligand H5L3 does not hydrolyze under the same condition, and the ester group does not form coordination bonds with an uranyl ion.

Keywords: 1, 2, 4-triazole, hydrolysis, NMR spectroscopy, uranyl ion
References: 
  1. Hudson, M. J., Boucher, C. E., Braekers, D., Destreux, J. F., Drew, M. G. B., Foreman, M. R. St J., Harwood, L. M., Hill, C., Madic, C., Markend, F. & Yougsa, T. G. A. (2006). New bis(triazinyl) pyridines for selective extraction of americium (III). New J. Chem., 30, pp. 1171-1183.
  2. Bharara, M. S., Heflin, K., Tonks, S., Strawbridgw, K. L. & Gorden, A. E. V. (2008). Hydroxy- and alkoxybridged dinuclear uranyl-Schiff base complexes: hydrolysis, transamination and extraction studies. Dalton Trans., 22, pp. 2966-2973. doi: https://doi.org/10.1039/B800469B
  3. Azam, M., Al-Resayes, S. I., Velmurugan, G., Venuvanalingam, P., Waglerc, J. & Krokec, E. (2015). Novel uranyl(VI) complexes incorporating propylene-bridged salen-type N2O2-ligands: a structural and computational approach, 44, pp. 568-577. doi: https://doi.org/10.1039/C4DT02112F
  4. Kilic, A. & Tas, E. (2007). The Synthesis, Characterization, Spectroscopic Studies and Catalys Properties of Some New Dinuclear Uranyl (VI) Metal Complexes Bearing Different vic Dioxime Groups. Synth. React. Inorg. Met.-Org. Chem., 37, No. 8, pp. 583-590.
  5. Vashchenko, O. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Starova, V. S., Trachevsky, V. V. & Lampeka, R. D. (2016). Structure and Fluorescence Properties of Uranyl Ion Complexes with 3-(2-Hydroxyphenyl)-5-(2-Pyridyl)-1,2,4-Triazole Derivatives. Teoret. i eksperim. khimiia, 52, No. 1, pp. 34-39 (in Russian).
  6. Khomenko, D. M., Doroshchuk, R. O., Vashchenko, O. V. & Lampeka, R. D. (2014). Synthesis and study of 5-(2-Hydroxyphenyl)-1,2,4-Thiazoleacetate Uranyl. Ukr. khim. zhurn., 80, No. 12, pp. 83-86 (in Russian).
  7. Becker, H., Berger, W. & Domschre, G. (1973). Organicum: Practical Handbook of Organic Chemistry. Reading, MA: Addison-Wesley.
  8. Tietze, L. F., & Eicher Th. (1991). Reaktionen und Synthesen. Stuttgart: Georg Thieme Verlag.
  9. Gottlieb, H. E., Kotlyar, V., & Nudelman, A. J. (1997) NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem., 62, Iss. 21, pp. 7512-7515.
  10. Kiselov, A. S. & Piatnitski Chekler, E. L. (2009). Design and chemical synthesis of [1, 2, 4] triazol[1, 5-c]pyriminid-5-yl amines, a novel class of VEGFR-2 kinase inhibitors. Tetrahedron Lett., 50, pp. 3809-3812.
  11. Babij, N. R., McCusker, E. O., Whiteker, G. T., Canturk, B., Choy, N., Creemer, L. C., De Amicis, C. V., Hewlett, N. M., Johnson, P. L., Knobelsdorf, J. A., Li, F., Lorsbach, B. A., Nugent, B. M., Ryan, S. J., Smith, M. R. & Yang, Q. (2016). NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry. Org. Process Res. Dev., 20, Iss. 3, pp. 661-667.