Efficient mechanism of DNA repair stabilizes genome of Arabidopsis thaliana from the Chernobyl zone

1Shevchenko, GV, 1Talalaiev, OS
1M.G. Kholodny Institute of Botany of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 4:84-90
Section: Biology
Language: English

Tolerance to radiomimetics and heavy metals has been investigated in Arabidopsis thaliana plants collected in the Chernobyl zone. Decrease of root growth and DNA damage level of a single cell have been evaluated. Tolerance of A. thaliana from the zone to the growth on genotoxic medium has been revealed. It is noted that certain Arabidopsis plants recover genomic DNA faster than control ones collected outside of the zone. Screening revealed plant lines expressing various levels of tolerance to genotoxins.

Keywords: Arabidopsis thaliana roots, Chernobyl, DNA damage and repair, single cell DNA gel electrophoresis
  1. Syomov, A. B., Ptitsyna, S. N. & Sergeeva, S. A. (1992). Analysis of DNA strand break induction and repair in plants from the vicinity of Chernobyl. Sci. Total. Environ., 112, pp. 1-8.
  2. Kovalchuk, O., Kovalchuk, I., Arkhipov, A. Telyuk, P., Hohn, B. & Kovalchuk, L. (1998). The Allium cepa chromosome aberration test reliably measures genotoxicity of soils of inhabited areas in the Ukraine
  3. contaminated by the Chernobyl accident. Mutat. Res./Genetic Toxicology and Environmental Mutagenesis, 415, Iss. 1-2, pp. 47-57. doi: http://dx.doi.org/10.1016/S1383-5718(98)00053-9.
  4. Ziablitskaia, E. I., Geras'kin, S. A., Udalova, A. A. & Spirin, E. V. (1996). An Analysis of the Genetic Sequelae of the Contamination of Winter Rye Crops by the Radioactive Fallout From the Chernobyl Atomic Electric Power Station. Radiats. Biol. Radioecol., 36, No. 4, pp. 498-505.
  5. Kovalchuk, I., Molinier, J., Yao, Y., Arkhipov, A. & Kovalchuk, O. (2007). Transcriptome analysis reveals fundamental differences in plant response to acute and chronic exposure to ionizing radiation. Mutat. Res./Fundamental and Molecular Mechanisms of Mutagenesis, 624, Iss. 1-2, pp. 101-113. doi: https://doi.org/10.1016/j.mrfmmm.2007.04.009
  6. Kovalchuk, I., Abramov, V., Pogribny, I. & Kovalchuk, O. (2004). Molecular Aspects of Plant Adaption to Life in the Chernobyl Zone. Plant. Physiol., 135, pp. 357-363.
  7. Santos, C. L. V., Pourrut, B. & Ferreira de Oliveira, J. M. P. (2015). The use of comet assay in plant toxicology: recent advances. Front. Genet., 6. doi: https://doi.org/10.3389/fgene.2015.00216
  8. Angelis, K. J., Duљinská, M. & Collins, A. R. (1999). Single cell gel electrophoresis: Detection of DNA damage at different levels of sensitivity. Electrophoresis, 20, Iss. 10, pp. 2133-2138. doi: https://doi.org/10.1002/(SICI)1522-2683(19990701)20:10<2133::AID-ELPS2133>3.0.CO;2-Q
  9. Forde, B. G. (2013). Glutamate signaling in roots. J. Exp. Bot., 65, No 2, pp. 779-787. doi: https://doi.org/10.1093/jxb/ert335
  10. Olive, P. L. & Banath, J. P. (2006). The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc., 1, pp. 23-29.
  11. Shevchenko, G. V., Talaliev, A. S., Doonan, J. (2012). Arabidopsis thaliana seedlings from the Chernobyl NPP zone are tolerant to DNA-damaging agents. Dopov. Nac. akad. nauk Ukr., No. 12, pp. 157-162 (in Russian).
  12. Puchta, H. J. (2005). The repair of double – strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot., 56, Iss. 409, pp. 1-14. doi: https:// doi.org/10.1093/jxb/eri025
  13. Pacher, P., Beckman, J. S. & Liaudet, L. (2007). Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev., 87, No. 1, pp. 315-424. doi: https://doi.org/10.1152/physrev.00029.2006
  14. Kozak, J., West, C., White, C. E., da Costa-Nunes, J. A. & Angelis, K. J. (2009). Rapid repair of DNA double strand breaks in Arabidopsis thaliana is dependent on proteins involved in chromosome structure maintenance. DNA Repair, 8, Iss. 1, pp. 413-419. doi: https://doi.org/10.1016/j.dnarep.2008.11.012
  15. Bray, C. M. & West, C. E. (2005). DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New. Phytol., 168, pp. 511-528. doi: https://doi.org/10.1111/j.1469-8137. 2005.01548.xReceived 08.11.2016