Modulatory effects of sodium glutamate on functions of rat's circulating phagocytic cells in vivo and in vitro

1Rudyk, MP, 1Pozur, VV, 1Opeida, IV, 1Voieikova, DO, 2Khranovska, NM, 3Fedorchuk, OG, 1Berehova, TV, 1Ostapchenko, LI
1ESC "Institute of Biology", Taras Shevchenko National University of Kyiv
2National Cancer Institute, Kyiv
3R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 5:89-97
Section: Biology
Language: Ukrainian

The functional state and metabolic patterns of peripheral blood phagocytes from adult male rats, which were injected with sodium glutamate a the dose of 20 mg/animal during the early postnatal period, are inves tigated. For the characteristic of phagocyte functions, their oxidative metabolism and phagocytic activity are analyzed by flow cytometry. The animals treated with sodium glutamate developed obesity in adulthood. The obesity was associated with the pro-inflammatory metabolic profile of circulating granulocytes, as eviden ced by increased oxidative metabolism along with decreased phagocytic activity of these cells. The treatment of peripheral blood phagocytes from adult intact rats with sodium glutamate at concentrations of 20, 2.00, 0.20 and 0.02 mg/ml in vitro caused their antiinflammatory metabolic changes.

Keywords: circulating granulocytes, circulating monocytes, obesity, phagocytosis activity, reactive oxygen species, sodium glutamate
  1. Savcheniuk, O. A., Virchenko, O. V., Falalyeyeva, T. M., Beregova, T. V., Babenko, L. P., Lazarenko, L. M., Demchenko, O. M., Bubnov, R. V. & Spivak, M. Y. (2014). The efficacy of probiotics for monosodium glutamateinduced obesity: dietology concerns and opportunities for prevention. EPMA J., 5, No 1, pp. 2.
  2. Roman-Ramos, R., Almanza-Perez, J. C., Garcia-Macedo, R., Blancas-Flores, G., Fortis-Barrera, A., Jasso, E. I., Garcia-Lorenzana, M., Campos-Sepulveda, A. E., Cruz, M. & Alarcon-Aguilar, F. J. (2011). Monosodium glutamate neonatal intoxication associated with obesity in adult stage is characterized by chronic inflammation and increased mRNA expression of peroxisome proliferator-activated receptors in mice. Basic Clin. Pharmacol. Toxicol., 108, No. 6, pp. 406-413.
  3. Fantuzzi, G. (2005). Adipose tissue, adipokines, and inflammation. J. Allergy Clin. Immunol., 115, No. 5, pp. 911-919.
  4. Dixit, V. D. (2008). Adipose-immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span. J. Leukoc. Biol., 84, No. 4, pp. 882-892.
  5. Chawla, A., Nguyen, K. D. & Goh, Y. P. (2011). Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol., 11, No. 11, pp. 38-49.
  6. Sell, H., Habich, C. & Eckel, J. (2012). Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol., 8, No. 12, pp. 709-716.
  7. Nishimura, S., Manabe, I., Takaki, S., Nagasaki, M., Otsu, M., Yamashita, H., Sugita, J., Yoshimura, K., Eto, K., Komuro, I., Kadowaki, T. & Nagai, R. (2013). Adipose natural regulatory B cells negatively control adipose tissue inflammation. Cell Metab., S1550-4131(13)00386-0
  8. Fischer-Posovszky, P., Wang, Q. A., Asterholm, I. W., Rutkowski, J. M. & Scherer, P. E. (2011). Targeted deletion of adipocytes by apoptosis leads to adipose tissue recruitment of alternatively activated M2 macrophages. Endocrinology, 152, No. 8, pp. 3074-3081.
  9. Kawanishi, N., Niihara, H., Mizokami, T., Yada, K. &, Suzuki, K. (2015). Exercise training attenuates neutrophil infiltration and elastase expression in adipose tissue of high-fat-diet-induced obese mice. Physiol. Rep., 3, No. 9, e12534.
  10. Lumeng, C. N., Deyoung, S. M., Bodzin, J. L. & Saltiel, A. R. (2007). Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes, 56, No. 1, pp. 16-23.
  11. Boldyrev, A. A., Kazey, V. I., Leinsoo, T. A., Mashkina, A. P., Tyulina, O. V., Johnson, P., Tuneva, J. O., Chittur, S. & Carpenter, D. O. (2004). Rodent lymphocytes express functionally active glutamate receptors. Biochem. Biophys. Res. Commun., 324, No. 1, pp. 133-139.
  12. Skivka, L.M., Fedorchuk, O.G., Rudyk, M.P., Pozur, V.V., Khranovska, N.M., Grom, M. Y. & Nowicky, J. W. (2013). Antineoplastic drug NSC631570 modulates functions of hypoxic macrophages. Tsitol. Genet., 47, No. 5, pp. 70-82.
  13. Shapiro, H., Lutaty, A. & Ariel, A. (2011). Macrophages, meta-inflammation, and immuno-metabolism. Scientific World J., 11, pp. 2509-2529.
  14. Beyrau, M., Bodkin, J. V. & Nourshargh, S. (2012). Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation and immunity. Open Biol., 2, No. 11, 120134.
  15. Pozur, V.V., Rudyk, M.P., Serhiychuk, T.M., Svyatetska, V.M., Akulenko, I.V., Yankovskyy, D.S., Dyment, G.S., Beregova, T.V. & Ostapchenko, L.I. (2016). The effect of multiprobiotic "symbiter acidophilus" on the intestinal microflora and functional activity of peritoneal macrophages in rats with glutamate-induced obesity. Studia Biologica, 10, No. 11, pp. 61-74 (in Ukrainian).