Phase separation of Ti-containing interpenetrating polymer networks depending on the kinetics of their formation

1Ignatova, TD, 1Tsebrienko, TV, 1Vorontsova, LO, 1Alekseeva, TT
1Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 6:66-73
https://doi.org/10.15407/dopovidi2017.06.066
Section: Chemistry
Language: Ukrainian
Abstract: 

The process of phase separation and the morphology of organic-inorganic interpenetrating polymer networks (OI IPNs) based on the crosslinked polyurethane, poly(hydroxyethyl methacrylate) (PHEMA) and poly(ti tanium oxide) (—TiO2—)n obtained by the sol-gel method in the presence of poly(oxypropylene glycol) at various molar ratios of titanium isopropoxide (Ti(OPri)4) and water have been investigated. It is established that the phase separation in OI IPNs depends on the kinetics of formation of PHEMA-component, and it occurs through the mechanism of spinodal decomposition. It is shown that the process of phase separation can be controlled by va rying the ratios of components of IPNs, content of the inorganic component, and the molar ratio of Ti(OPri)4/H2O, and OI IPNs can be obtained with the different phase structures.

Keywords: interpenetrating polymer networks, light scattering, phase separation, poly(titanium oxide), radical polymerization
References: 
  1. Sperling, L. N. (1981). Interpenetrating Polymer Networks and Related Materials. New York, London: Plenum Press.
  2. Lipatov, Yu. S. & Alekseeva, T. T. (2007). Phase-separated interpenetrating polymer networks. Adv. Polym. Sci., 208, No. 1, pp. 1-227.
  3. Lipatov, Yu. S. & Nesterov, A. E. (1997). Thermodynamics of polymer blends. Lancaster, Basel: Techn. Publ. Co.
  4. Ignatova, T. D., Kosyanchuk, L. F., Todosiychuk, T. T. & Nesterov, A. E. (2011). Reaction-induced phase separation and structure formation in polymer blends. Compos. Interfac., 18, No. 3, pp. 185-236.
  5. Balcerski, W., Ryu, S. Y. & Hoffmann, M. R. (2007). Visible-light photoactivity of nitrogen-doped TiO2: photooxidation of HCO2H to CO2 and H2O. J. Phys. Chem. C, 111, pp. 15357-15362.
  6. Brinker, C. J. & Scherer, G. W. (1990). Sol-Gel Science, New York: Academic Press.
  7. Tsebrienko, T. V. & Alekseeva, T. T. (2016). The features of the kinetics of formation of organic-inorganic interpenetrating polymer networks (OI IPNs) based on crosslinked polyurethane (PU), poly hydro xyethy lmethacrylate (PGEMA) and polytitaniumoxide (—TiO2 —)n, obtained by sol-gel method. Polym. J., 38, No. 1, rr. 47-55 (in Russian).
  8. Lipatov, Yu. S., Kosyanchuk, L. F. & Nesterov, A. E. (2002). Phase separation in blends of linear polymers formed in situ according to different mechanisms. Polymer. Int., 51, No. 9, pp. 772-780.
  9. van Aartsen, J. J. & Smolders, C. A. (1970). Light scattering of polymer solutions during liquid-liquid phase separation. Eur. Polym. J., 6, No. 8, pp. 1105-1112.
  10. Cahn, J. W. (1965). Phase separation by spinodal decomposition in isotropic system. J. Chem. Phys., 42, No. 1, pp. 93-99.
  11. Gladyshev, G. P. & Popov, V. A. (1974). The radical polymerization at the high degrees of the conversion, Moscow: Nauka (in Russian).
  12. Pomogailo, A. D., Rozenberg, A. S. & Uflyand, I. E. (2000). The nanoparticles of metals in polymers. Moskow: Khimiya (in Russian).
  13. Tsebrienko, T. V., Alekseeva, T. T., Menzheres, G. Ya. & Ostapyuk, S. N. (2016). Spectral researches of gels of poly(titanium oxide) and hybrid polyurethane. Ukr. Chem. J., 82, No. 10, pp.96-108 (in Russian).
  14. Rozenberg, B. A., Gur'eva, L. L., Dzhavadyan, E. A. & Estri na, G. A. (2003). Interchain exchange reactions in the anionic polymerization of (meth)acrylates containing groups with mobile hydrogen atoms. Macromol. compounds. Ser. A., 45, No. 9, rr. 1454-1461 (in Russian).
  15. Feld, R. & Cowe, P.L. (1965). The Organic Chemistry of Titanium. London: Butterworths.