pH- and thermosensitive nano(ferro)gels based on N-isopropylacrylamide and acrylic acid

1Samchenko, Yu.M, 1Kernosenko, LO, 1Kryklya, SO, 1Pasmurtseva, NO, 1Poltoratska, TP, 2Marynin, AI
1F.D. Ovcharenko Institute of Biocolloidal Chemistry of the NAS of Ukraine, Kyiv
2National University of Food Technologies, Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 6:74-81
https://doi.org/10.15407/dopovidi2017.06.074
Section: Chemistry
Language: Ukrainian
Abstract: 

Nanosized hydrogels based on thermosensitive poly-N-isopropylacrylamide, copolymers with acrylic acid, and their nanocomposites with incorporated magnetite nanoparticles (approximate particle size of 100-200 nm) are synthesized. It was shown that the hydrogel matrix size and the zeta potential of nanoparticles depend on the temperature and pH. The diameter of nanoparticles is reduced by 2-3 times, if the hydrogel is heated up to 32 °C, and by 3-5 times, if pH decreases below 5. This creates conditions for the controllable release of incorporated anticancer drugs (in particular, doxorubicin) and for using nanogels in therapeutic hypothermia. Incorporation of nanosized magnetite into the hydrogel matrices provides a controlled localization of therapeutic systems in close proximity to target organs by applying a low-intensity constant magnetic field.

Keywords: acrylic acid, doxorubicin, ferrogels, magnetite, N-isopropylacrylamide, smart, thermosensitive gels, zeta potential
References: 
  1. Park, W., Park, S., j. & Na, K. (2010). Potential of self-organizing nanogel with acetylated chondroitin sulfate as an anti-cancer drug carrier. Colloid. Surfaces B., 79, pp. 501-508. https://doi.org/10.1016/j.colsurfb.2010.05.025
  2. Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R. & Rudzinski, W.E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. J. Control.Release, 70, pp. 1-20. https://doi.org/10.1016/S0168-3659(00)00339-4
  3. Mitra, S., Gaur, U., Ghosh, P. & Maitra, A. (2001). Tumour targeted delivery of encapsulated dextran-do xorubicin conjugate using chitosan nanoparticles as carrier. J. Control. Release, 74, pp. 317-323. https://doi.org/10.1016/S0168-3659(01)00342-X
  4. Agiotis, L., Theodorakos, I., Samothrakitis, S., Papazoglou, S., Zergioti, I. & Raptis, Y.S. (2016). Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications. J. Magn. Magn. Mater., 401, pp. 956-964. https://doi.org/10.1016/j.jmmm.2015.10.111
  5. Dilnawaz, F., Singh, A., Mohanty, C. & Sahoo, S. K. (2010). Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials, 31, pp. 3694-3706. https://doi.org/10.1016/j.biomaterials.2010.01.057
  6. Yallapu, M. M, Jaggi, M. & Chauhan, S. C. (2011). Design and engineering of nanogels for cancer treatment. Drug Discovery Today, 16, pp. 457-463. https://doi.org/10.1016/j.drudis.2011.03.004
  7. Morinloto, N., Qiu, X. P., Winnik, F. M. & Akiyoshi, K. (2008). Dual stimuli-responsive nanogels by selfassembly of polysaccharides lightly grafted with thiol-terminated poly(N-isopropylacrylamide) chains. Macromolecu les, 41, pp. 5985-5987. https://doi.org/10.1021/ma801332x
  8. Chang, B., Sha, X., Guo, J., Jiao, Y., Wang, C. & Yang, W. (2011). Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J. Mater. Chem., 21, pp. 9239-9247. https://doi.org/10.1039/c1jm10631g
  9. Liu, C., Guo, J., Yang, W., Hu, J., Wang, C. & Fu, S. (2009). Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release. J. Mater. Chem., 19, pp. 4764-4770. https://doi.org/10.1039/b902985k
  10. Oh, N. M., Oh, K. T., Baik, H. J. & Lee, B. R. (2010). A self-organized 3-diethylaminopropyl-bearing glycol chitosan nanogel for tumor acidic pH targeting: In vitro evaluation. Colloid. Surfaces B., 78, pp. 120-126. https://doi.org/10.1016/j.colsurfb.2010.02.023
  11. Bae Y., Nishiyama N., Fukushima, S., Koyama, H., Yasuhiro, M. & Kataoka, K. (2005). Preparation and biological characterization of polymeric micelle drug carriers with Intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem., 16, pp. 122-130. https://doi.org/10.1021/bc0498166
  12. Yadavalli, T., Ramasamy, S. & Chandrasekaran, G. (2015). Dual responsive PNIPAM–chitosan targeted magnetic nanopolymersfor targeted drug delivery. J. Magn. Magn. Mater., 380, pp. 315-320. https://doi.org/10.1016/j.jmmm.2014.09.035
  13. Konovalova, V. V., Samchenko, Yu. M., Kryklya, S. O., Scherbakov, S. M., Burban, A. F. & Ulberg, Z. R. (2016). Synthesys and characterization of multi-responsive nano-sized hydrogel based on N-isopropylacryl amide and magnetite. J. Appl. Chem. Sci. Intern., 6, pp. 132-140.
  14. Staples, C. A., Murphy, S. R., McLaughlin, J. E., Leung, H. W., Cascieri, T. C. & Farr, C. H. (2000). Determination of selected fate and aquatic toxicity characteristics of acrylic acid and a series of acrylic esters. Chemosphere, 40, pp. 29-38. https://doi.org/10.1016/S0045-6535(99)00228-3