Quantum-chemical properties of L-carnitine

1Kazakova, OO, 2Syrovaya, GO, 3Chekman, IS, 3Zahorodnyi, MI, 2Chalenko, NM
1O. O. Chuiko Institute of Surface Chemistry of the NAS of Ukraine, Kyiv
2Kharkiv National Medical University
3O.O. Bogomolets National Medical University, Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 7:64-68
https://doi.org/10.15407/dopovidi2017.07.064
Section: Chemistry
Language: Ukrainian
Abstract: 

The distributions of charges and the electrostatic and hydrophobic potentials are analyzed, and the basic reaction centers of a molecule of L-carnitine are revealed. A large dipole moment and the variety of functional groups of the molecule evidence about a possibility of its interaction with polar and nonpolar structures of biomembranes.

Keywords: functional groups, L-carnitine, quantum-chemical properties
References: 
  1. Gubsky, Y. I. & Nizhenkovskaya, I. V. (Eds). (2016). Biological and bioorganic chemistry: textbook. In 2 books. Book 2. Biological chemistry. Kiev: VSV “Medicine” (in Ukrainian).
  2. Owen, L. & Sunram-Lea, S. I. (2011). Metabolic Agents that Enhance ATP can Improve Cognitive Functioning: A Review of the Evidence for Glucose, Oxygen, Pyruvate, Creatine, and L-Carnitine. Nutrients, 3, No. 8, pp. 735-755. https://doi.org/10.3390/nu3080735
  3. Lango, R., Smolenski, R. T., Narkiewicz, M., Suchorzewska, J. & Lysiak-Szydlowska, W. (2001). Influence of L-carniti ne and its derivatives on myocardial metabolism and function in ischemic heart disease and during cardiopulmonary bypass. Cardiovasc. Res., 51, Iss. 1, pp. 21-29. https://doi.org/10.1016/S0008-6363(01)00313-3
  4. Mingorance, C., Rodríguez-Rodríguez, R., Justo, M.L., Álvarez de Sotomayor, M. & Herrera, M.D. (2011). Critical update for the clinical use of L-carnitine analogs in cardiometabolic disorders. Vasc. Health Risk Manag., 2011, No. 7, pp. 169-176. doi: https://doi.org/10.2147/VHRM.S14356
  5. Chekman, I.S. (2012). Quantum pharmacology, Kyiv. Naukova Dumka (in Ukrainian).
  6. Kohn, W. & Sham, L. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. J. Phys. Rev., 140, No. 4, pp. 1133-1145. https://doi.org/10.1103/PhysRev.140.A1133
  7. Becke, A.D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, No. 18, pp. 5648-5661. https://doi.org/10.1063/1.464913
  8. Tomasi, J., Mennucci, B. & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chem. Rev., 105, No. 8, pp. 2999-3093. https://doi.org/10.1021/cr9904009
  9. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. & Montgomery, J.A. (1993). General atomic and molecular electronic structure system. J. Comput. Chem., 14, No. 11, pp. 1347-1355. https://doi.org/10.1002/jcc.540141112
  10. Granovsky, A.A. Firefly version 8. Retrieved from http://classic.chem.msu.su/gran/firefly/index.html
  11. Kazakova, O.A. (2011). Interaction of bioactive molecules with highly dispersed silica surface in aqueous medium: quantum chemical investigation. Poverhnost, 2011, Iss. 3, pp. 13-21 (in Russian).
  12. Cheeseright, T., Mackey, M., Rose, S. & Vinter, A. (2006) Molecular Field Extrema as Descriptors of Biological Activity: Definition and Validation. J. Chem. Info. Model, 46, No. 2, pp. 665-676. https://doi.org/10.1021/ci050357s