Adaptive strategy of halophytic plants Polygonum maritimum and Euphorbia paralias

1Kosakivska, IV, 1Babenko, LM, 1Shcherbatiuk, MM, 1Vedenicheva, NP, 1Sheyko, OA, 2Ivanova, A, 2Angelova, L, 3Maslenkova, L
1M. G. Kholodny Institute of Botany of the NAS of Ukraine, Kyiv
2Institute of Plant Physiology and Genetics of the BAS, Sophia, Bulgaria
3Institute of Biophysics and Biomedical Engineering, Sophia, Bulgaria
Dopov. Nac. akad. nauk Ukr. 2017, 7:98-106
Section: Ecology
Language: English

The leaf surface microstructure, pigments spectrum, phytohormones content, and lipids composition of halophytes with various metabolic and physiological strategies of adaptation to salinity of Polygonum maritimum L. and Euphorbia paralias L. grown under natural conditions on dunes of the Pomorie Lake (Bulgaria) are compared. P. maritimum stomata are located on the leaf both sides below the cuticle level, whereas, in E. raralias, stomata are present only on the abaxial side, and they are surrounded with hump-shaped cuticle constructions. A high amount of carotenoids (as compared with chlorophylls) in P. maritimum leaves indicates that these pigments have a light-collecting function and could transfer an additional energy to chlorophylls. In leaves of E. paralias and P. maritimum, free abscisic acid and conjugated indole-3-acetic acid prevailed. The inactive cytokinins (cis-zeatin and zeatin-O-glucoside) dominated in E. paralias leaves, whereas P. maritimum leaves contained a significant quantity of isopentenyl-type cytokinins. The presence of a large amount of saturated fatty acids provides a decrease of membrane permeability and better resistance against soil salinity. It is concluded that the ecological strategy of halophytes involves the complex of structural and functional adaptations and determines a successful existence under salinity conditions.

Keywords: Euphorbia paralias L., lipids, microstructure, photosynthetic pigments, phytohormones, Polygonum maritimum L.
  1. Ashraf, M. & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51, pp. 163-190. doi:
  2. Stetsenko, L. A., Vedenicheva, N. P., Likhnevsky, R. V. & Kuznetsov, Vl.V. (2015). Influence of abscisic acid and fluridone on the content of phytohormones and polyamines and the level of oxidative stress in plants of Mesembryanthemum crystallinum L. under salinity. Biol. Bull., 42, pp. 98-107. doi:
  3. Ivanova, A., Khozin-Goldberg, I., Kamenarska, Z., Nechev, J., Cohen, Z., Popov, S. & Stefanov, K. (2003). Lipophylic compounds from Euphorbia peplis L. — a halophytic plant from the Bulgarian Black Sea coast. Z. Naturforsch., 58, pp. 783-788.
  4. Wellburn, A. J. (1994). The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol., 144, pp. 307-313.
  5. Christie, W. W. (1989). Gas Chromatography and Lipids: a Practical Guide. Ayr, Scotland: Oily Press.
  6. Musatenko, L., Vedenicheva, N., Vasyuk, V., Generalova, V., Martyn, G. & Sytnik, K. (2003). Phytohormones
  7. in seedlings of maize hybrids differing in their tolerance to high temperatures. Russ. J. Plant Physiol., 50, pp. 499-504. doi:
  8. Evert, R. F., Eichhorn, S. E. & Raven, P. H. (2013). Raven Biology of Plants. 8 ed. New York: Freeman.
  9. Ivanova, A. P., Tsonev, T. D., Peeva, V. N., Najdenski, H. M., Tsvetkova, I. V., Babenko, L. M., Shcherbatiuk, M.M., Sheiko, O. A. & Kosakivska, I. V. (2015). Euhalophyte Eryngium maritimum L.: the microstructure and functional characteristics. J. Stress Physiol. Biochem., 11, pp. 52-61.
  10. Babenko, L. M., Kosakivska, I. V., Akimov, Yu. A., Klymchuk, D. O. & Skaternaya, T. D. (2014). Effect of temperature stresses on pigment sontent, lipoxygenase activity and cell ultrastructure of winter wheat seedlings. Genetics and Plant Physiol., 4, pp. 117-125.
  11. Nisar, N., Li, L., Lu, Sh., Khin, N. C. & Pogson, B. J. (2015). Carotenoid metabolism in plants. Mol. Plant, 8, pp. 68-82. doi:
  12. Xiong, L. (2007). Abscisic acid in plant response and adaptation to drought and salt stress. In Advances in molecular breeding toward drought and salt tolerant crops (pp. 193-221). Berlin: Springer.
  13. Vedenicheva, N. P., Voytenko, L. V., Musatenko, L. I., Stetsenko, L. A. & Sheviakova, N. I. (2011). Changes of phytohormones content in halo- and glycophytes under salinity. Studia Biol., 5, pp. 37-44.
  14. Talla, S. K., Panigrahy, M., Kappara, S., Nirosha, P. & Neelamraju, S. (2016). Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J. Exp. Bot., 67, pp. 1839-1851. doi:
  15. Mansour, M. M. F., Salama, K. A. & Al-Mutawa, M. M. (2002). Effects of NaCl and polyamines on plasma membrane lipids of wheat roots. Biol. Plant., 45, pp. 235-239. doi:
  16. Rodriguez-Rosales, M. P., Kerbek, L. & Bueno, P. (1999). Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+–ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculentum Mill) calli. Plant Sci., 143, pp. 143-150.