Exact solutions for a nonstandard viscous Cahn—Hilliard system

1Mchedlov-Petrosyan, PO
1Davydov, LN
1NSC "Kharkov Institute of Physics and Technology" of the NAS of Ukraine
Dopov. Nac. akad. nauk Ukr. 2017, 7:37-42
Section: Physics
Language: English

The one-dimensional version of a nonstandard viscous Cahn–Hilliard system (proposed by Colli et al.) for the order parameter and chemical potential with a generally asymmetric polynomial double-well potential is considered. For this system, an exact travelling wave solution, which describes the advancing front of a phase transformation in an infinite domain, is found.

Keywords: Cahn—Hilliard equation, phase transition, travelling wave solution
  1. Cahn, J. W. & Hilliard, J. E. (1958). Free energy of nonuniform systems. I. Interfacial free energy. J. Chem. Phys., 28, pp. 258-267. https://doi.org/10.1063/1.1744102
  2. Cahn, J.W. (1961). On spinodal decomposition. Acta Metallurgica, No. 9, pp. 795-801. https://doi.org/10.1016/0001-6160(61)90182-1
  3. Van der Waals, J. D. (1979). The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. (1893). Translated by J. S. Rowlinson. J. Stat. Phys., 20, pp. 197–244. https://doi.org/10.1007/BF01011513
  4. Novick-Cohen, A. & Segel, L. A. (1984). Nonlinear aspects of the Cahn—Hilliard equation. Physica D, 10, pp. 277-298. https://doi.org/10.1016/0167-2789(84)90180-5
  5. Novick-Cohen, A. (2008). The Cahn—Hilliard equation. In C. M. Dafermos and E. Feireisl (Eds.) Handbook of Differential Equations. Evolutionary Equations, (Vol. 4, pp. 201-228), Amsterdam: Elsevier.
  6. Gurtin, M. E. (1996). Generalized Ginzburg—Landau and Cahn—Hilliard equations based on a microforce balance. Physica D, 92, pp.178-192. Surfaces A and B correspond to the lower limit in the first inequality of (28) and to the upper limit in the second inequality, respectively https://doi.org/10.1016/0167-2789(95)00173-5
  7. Novick-Cohen, A. (1988) On the viscous Cahn—Hilliard equation. In J. M. Ball (Ed.) Material Instabilities in Continuum Mechanics and Related Mathematical Problems (pp. 329-342), Oxford: Oxford Univ. Press.
  8. Podio-Guidugli, P. (2006). Models of phase segregation and diffusion of atomic species on a lattice. Ricerche di Matematica, No. 55, pp. 105-118. https://doi.org/10.1007/s11587-006-0008-8
  9. Colli, P., Gilardi, G., Podio-Guidugli, P. & Sprekels, J. (2011). Well-posedness and long-time behavior for a nonstandard viscous Cahn–Hilliard system. SIAM J. Appl. Math., 71, No. 6, pp. 1849-1870. https://doi.org/10.1137/110828526
  10. Mchedlov-Petrosyan, P. O. (2016). The convective viscous Cahn—Hilliard equation: Exact solutions. European Journal of Applied Mathematics, 27, pp. 42-65. https://doi.org/10.1017/S0956792515000285
  11. Colli, P., Gilardi, G., Podio-Guidugli, P. & Sprekels, J. (2012). Global existence for a strongly coupled Cahn—Hilliard system with viscosity. Boll. Unione Math. Ital., 9, No. 5, pp. 495-513.
  12. Colli, P., Gilardi, G., Podio-Guidugli, P. & Sprekels, J. (2012). Continuous dependence for a non-standard Cahn—Hilliard system with nonlinear atom mobility. Rend. Sem. Mat. Univ. Politec. Torino, 70, pp. 27-52.
  13. Colli, P., Gilardi, G., Podio-Guidugli, P. & Sprekels, J. (2013). Global existence and uniqueness for a singular/degenerate Cahn—Hilliard system with viscosity. J. Differential Equations, 254, pp. 4217-4244. https://doi.org/10.1016/j.jde.2013.02.014
  14. Colli, P., Gilardi, G., Krejčí P., & Sprekels, J. (2014). A continuous dependence result for a nonstandard system of phase field equations. Math. Meth. Appl. Sci., 37, pp. 1318-1324.
  15. Colli, P., Gilardi, G., Krejčí P., & Sprekels, J. (2014). A vanishing diffusion limit in a nonstandard system of phase field equations. Evol. Eqn. Control Theory, No. 3, pp. 257-275.