On the groups, whose all subgroups with infinite special rank are transitively normal

1Semko, NN, Velichko, TV
1State Tax Service National University of Ukraine, Irpin
Dopov. Nac. akad. nauk Ukr. 2017, 8:17-19
https://doi.org/10.15407/dopovidi2017.08.017
Section: Mathematics
Language: Ukrainian
Abstract: 

The periodic soluble groups, whose subgroups with infinite special rank are transitively normal, and the struc ture of a periodic radical group, whose subgroups with infinite special rank are transitively normal, are described.

Keywords: finite special rank, locally nilpotent radical, locally nilpotent residual, periodic group, soluble group, transitively normal subgroups
References: 
  1. Maltsev, A. I. (1948). On groups of finite rank. Mat. Sbornik, 22, pp. 351-352 (in Russian).
  2. Dixon, M. R., Kurdachenko, L. A. & Subbotin, I. Ya. (2007). On various rank conditions in infinite groups. Algebra Discrete Math., 4, pp. 23-44.
  3. Dixon, M. R. (2008). Certain rank conditions on groups. Noti di Matematica, 2, pp. 151-175.
  4. Dixon, M. R., Kurdachenko, L. A., Pypka, A. A. & Subbotin, I. Ya. (2016). Groups satisfying certain rank conditions. Algebra Discrete Math., 4, pp. 23-44.
  5. Dixon, M. R., Evans, M. J. & Smith, H. (1997). Locally (soluble-by-finite) groups with all proper insoluble subgroups of finite rank. Arch. Math. (Basel), 68, pp. 100-109. https://doi.org/10.1007/s000130050037
  6. Kurdachenko, L. A. & Subbotin, I. Ya. (2006). Transitivity of normality and pronormal subgroups. In Combinatorial group theory, discrete groups, and number theory. Contemporary Mathematics, Vol. 421 (pp. 201-212). Providence, RI: Amer. Math. Soc. https://doi.org/10.1090/conm/421/08038
  7. Mysovskikh, V. I. (1999). Subnormalizers and properties of embedding of subgroups in finite groups. Zap. Nauchn. Sem. POMI, 265, pp. 258-280 (in Russian).
  8. Kirichenko, V. V., Kurdachenko, L. A. & Subbotin, I. Ya. (2011). Some related to pronormality subgroup families and the properties of a group. Algebra Discrete Math., 1, pp. 75-108.
  9. Baer, R. (1933). Situation der Untergruppen und Struktur der Gruppe. S.-B. Heidelberg Akad., 2, pp. 12-17.