Influence of ionizing radiation energy loss on silica luminescence

1Mysiura, IM, 1Kononenko, SI, 1Kalantaryan, OV, 1Zhurenko, VP, 1Azarenkov, MA
1V. N. Karazin Kharkiv National University
Dopov. Nac. akad. nauk Ukr. 2017, 9:60-66
Section: Physics
Language: Russian

The paper deals with silica luminescence excited by X-rays with photon energies up to 60 keV. The spectra measured consisted of two intense luminescence bands with maxima at 3.15 eV (blue-band) and 4.3 eV (UV-band), associated with known types of intrinsic defects. Position of the blue band maximum was different from the case of ionoluminescence measured for the same silica sample. We have analyzed the role of a high specific energy loss of ions in a substance, which leads to a modification of silica intrinsic defects and a shift of the blue band maximum position from 3.15 eV to 2.7 eV. The experimental radioluminescence spectra were fitted by two Voigt function peaks with good accuracy.

Keywords: defects, ionoluminescence, radioluminescence, silica
  1. Goorsky, M. (Ed.). (2012). Ion implantation. Rijeka: InTech.
  2. Townsend, P. D. & Crespillo, M. L. (2015). An ideal system for analysis and interpretation of ion beam induced luminescence. Phys. Procedia., 66, pp. 345-351.
  3. Skuja, L. (1998). Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids, 239, pp. 16-48.
  4. Griscom, D. L. A. (2013). A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-ir absorption bands, with emphasis on self-trapped holes and how they can be controlled. Phys. Res. Int., 2, pp. 1-14.
  5. Salh, R. (2011). Silicon nanocluster in silicon dioxide: cathodoluminescence, energy dispersive X-ray analysis and infrared spectroscopy studies. In Crystalline silicon — properties and uses (pp. 173-218). Rijeka: InTech.
  6. Kononenko, S. I., Kalantaryan, O. V. & Muratov, V. I. (2003). Quartz investigation under fast proton irradiation by luminescence method. Funct. Mater., 10, pp. 1-5.
  7. Trukhin, A. N. (1994). Self-trapped exciton luminescence in α-quartz. Nucl. Instr. Meth. Phys. Res. B, 91, pp. 334-337.
  8. Corazza, A., Crivelli, B., Martinit, M. & Spinolo, G. (1995). The double nature of the 3.1 eV emission in si lica and in Ge-doped silica. J. Phys. Condens. Matter., 7, pp. 6739-6745.
  9. Nagata, S., Yamamoto, S., Toh, K. & Tsuchiya, B. (2004). Luminescence in SiO2 induced by MeV energy proton irradiation. J. Nucl. Mater., 329, pp. 1507-1510.
  10. Kononenko, S. I., Kalantaryan, O. V., Muratov, V. I. & Zhurenko, V. P. (2007). Silica luminescence induced by fast light ions. Radiat. Meas., 42, pp. 751-754.
  11. Mysiura, I., Kalantaryan, O., Kononenko, S., Zhurenko, V., Grigorenko, D., Chishkala, V., Azarenkov, N., Avotin, S. & Rohmanov, N. (2016). Photo- and radioluminescence of poleskiy amber. Funct. Mater., 23, pp. 582-586.
  12. Stevens-Kalceff, M. A. (2013). Cathodoluminescence microanalysis of silica and amorphized quartz. Mineral. Petrol., 107, pp. 455-469.
  13. Guzzi, M., Martini, M., Mattaini, M., Pio, F. & Spinolo, G. (1987). Luminescence of fused silica: Observation of the O2 – emission band. Phys. Rev. B, 35, pp. 9406-9409.
  14. Skuja, L. N. & Trukhin, A. N. (1989). Comment on "Luminescence of fused silica: Observation of the O2 – emission band". Phys. Rev. B, 39, pp. 3909-3911.
  15. Nishikawa, H., Shiroyama, T., Nakamura, R., Ohki, Y., Nagasawa, K. & Hama, Y. (1992). Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation. Phys. Rev. B, 45, pp. 586-591.