Novel composite fibers coated with birnessite layer

1Bondar, Yu.V
1Institute of Environmental Geochemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 9:102-109
Section: Ecology
Language: Russian

New composite material is synthesized by the in situ formation of a manganese dioxide layer on the surface of modified polyacrylonitrile fibers. Scanning electron microscopy, infra-red and X-ray diffraction analyses confirmed the formation of birnessite (δ-MnO2) on fibers' surface, which forms a compact layer consisted of rounded nanoaggregates. The testing of composite fibers in the catalytic oxidation of divalent iron in a solution has shown their high efficiency.

Keywords: birnessite, catalytic oxidation, composite fibers, manganese dioxide, polyacrylonitrile fibers
  1. Chuhrov, F. V., Gorshkov, A. I. & Drits, V. A. (1989). Hypergenic oxides of manganese. Moscow: Nauka (in Russian).
  2. Post, J. E. (1999). Manganese oxide minerals: crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA., 96, pp. 3446-3454.
  3. Frias, D., Nousir, S., Barrio, I., Montes, M., López, T., Centeno, M. A., & Odriozola, J. A. (2007). Synthesis and characterization of cryptomelane- and birnessite-type oxides: Precursor effect. Mater. Charact., 58, No 8-9, pp. 776-781.
  4. Murray, J. W. (1974). The surface chemistry of hydrous manganese dioxide. J. Colloid Interface Sci., 46, Iss. 3, pp. 357-371.
  5. Golden, D. C., Dixon, J. B., & Chen, C. C. (1986). Ion exchange, thermal transformations, and oxidizing properties of birnessite. Clay. Clay Miner., 34, Iss. 5, pp. 511-520.
  6. Dyer, A., Pillinger, M., Harjula, R. & Amin, S. (2000). Sorption characteristics of radionuclides on synthetic birnessite-type layered manganese oxides. J. Mater. Chem., 10, Iss. 8, pp. 1867-1874.
  7. Al-Attar, L. & Dyer, A. (2002). Sorption behaviour of uranium on birnessite, a layered manganese oxide. J. Mater. Chem., 12, Iss. 5, pp. 1381-1386.
  8. Remucal, C. K. & Ginder-Vogel, M. (2014). A critical review of the reactivity of manganese oxides with organic contaminants. Environ. Sci. Process. Impacts, 16, Iss. 6, pp. 1247-1266.
  9. Bondar, Y., Kuzenko, S., Han, D.-H. & Cho, H.-K. (2014). Development of novel nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric. Nanoscale Res. Lett., 9: 180.
  10. Grachek, V. I., Lysenko, G. N., Akulich, Z. I., Isakovich, O. I. & Shunkevich, A. A. (2009). Study of the structure of chelate fibrous ionites by IR spectroscopy. Zhurn. obschei. khimii, 79, Iss. 3, pp. 360-365 (in Russian).
  11. Boumaiza, H., Coustel, R., Medjahdi, G., Ruby, C. & Bergaoui, L. (2017). Conditions for the formation of pure birnessite during the oxidation of Mn(II) cations in aqueous alkaline medium. J. Solid State Chem., 248, pp. 18-25.
  12. Chuhrov, F.V., Gorshkov, A.I., Rudnitskaya, E.S. & Sivtsov, A.V. (1978). To characterization of bernessite. Izv. AN SSSR. Ser. geol., No. 9, pp. 67-75 (in Russian).
  13. Potter, R. M. & Rossman, G. R. (1979). The tetravalent manganese oxides: identification, hydration, and struc tural relationships by infrared spectroscopy. Am. Mineral., 64, Iss. 11-12, pp. 1199-1218.
  14. Mamchenko, A. V., Misochka, I. V., Deshko, I. I., Kiy, N. N. & Gerasimenko, N. G. (2009). Priority areas in the technology of purifying underground waters of iron. Khim. i technol. vody, 31, Iss. 1, pp. 57-77 (in Russian).
  15. Tarasevich, Yu. I., Kulishenko, O. Yu., Ostapenko, R. V. & Kravchenko, T. B. (2014). De-ironing and de manganation of artesian water at industrial water intakes in Mukacheve (Zakarpats'ka region). Dopov. Nac. akad. nauk Ukr., No. 10, pp. 136-143 (in Ukrainian). doi: