Properties of the fluid flow in a cylindrical duct with stenoses

TitleProperties of the fluid flow in a cylindrical duct with stenoses
Publication TypeJournal Article
Year of Publication2017
AuthorsVovk, IV, Trotsenko, Ya.P
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2017.09.033
Issue9
SectionMechanics
Pagination33-40
Date Published9/2017
LanguageUkrainian
Abstract

The flow of a viscous incompressible fluid in a cylindrical duct with two serial contractions (stenoses) is studied by the numerical solution of unsteady Navier—Stokes equations. It is shown that an ensemble of vortex  structures develops in the system that causes stable periodic self-sustained oscillations of the velocity profile at the outlet of the second stenosis orifice.

Keywordsduct with stenoses, self-sustained oscillations, vortex structures
References: 
  1. Vovk, I. V. & Grinchenko, V. T. (2010). The sound born flow (essay about an aerohydrodynamical acoustics). Kyiv: Naukova Dumka (in Russian).
  2. Hourigan, K., Welsh, M. C., Thompson, M. C. & Stokes, A. N. (1990). Aerodynamic sources of acoustic resonance in a duct with baffles. J. Fluids Struct., Vol. 4, Iss. 4, pp. 345-370. https://doi.org/10.1016/0889-9746(90)90130-W
  3. Gavriely, N. (1995). Breath sounds methodology. London, Tokyo: CRC Press.
  4. Basovskiy, V. G., Vovk, I. V. & Vovk, O. I. (2003). On generation of tonal sound oscillations by airflow in stenosed airway. Akust. Visn., 6, No. 1, pp. 3-21 (in Russian).
  5. Wilson, T. A., Beavers, G. S., DeCoster, M. A., Holger, D. K. & Regenfuss, M. D. (1971). Experiments on the fluid mechanics of whistling. J. Acoust. Soc. Am., 50, Iss. 1B, pp. 366-372. https://doi.org/10.1121/1.1912641
  6. Vovk, I. V., Grinchenko, V. T. & Malyuga, V. S. (2009). Self-sustained oscillations of the flow in a duct with stenoses. Prykl. Hidromeh., 11, No. 4, pp. 17-30 (in Russian).
  7. Sweby, P. K. (1984). High resolution schemes using flux limiters for hyperbolic conservation laws. J. Numer. Anal., Vol. 21, Iss. 5, pp. 995-1011. https://doi.org/10.1137/0721062
  8. Ferziger, J. H. & Peric, M. (2002). Computational methods for fluid dynamics. Berlin: Springer. https://doi.org/10.1007/978-3-642-56026-2
  9. Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J. M., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. & Van der Vorst, H. (1994). Templates for the solution of linear systems: Building blocks for iterative methods. Philadelphia: SIAM. https://doi.org/10.1137/1.9781611971538
  10. Golovynskyi, A. L., Malenko, A. L., Sergienko, I. V. & Tulchinsky, V. G. (2013). Power efficient supercomputer SCIT-4. Visn. Nac. akad. nauk. Ukr., No. 2, pp. 50-59. https://doi.org/10.15407/visn2013.02.050
  11. Malyuga, V. S. (2010). Numerical investigation of the flow in a duct with two serial stenoses. Algorithm of the solution. Prykl. Hidromeh., 12, No. 4, pp. 45-62 (in Russian).