Influence of UV-B on expression profiles of genes involved in the development of autophagy by means of microtubules

Olenieva, VD, Lytvyn, DI, 1Yemets, AI, 1Blume, Ya.B
1Institute of Food Biotechnology and Genomics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2018, 1:100-109
https://doi.org/10.15407/dopovidi2018.01.100
Section: Biology
Language: Ukrainian
Abstract: 

Transcriptome analysis of key genes involved in realization of autophagy induced by UV-B irradiation in Arabidopsis thaliana cells is conducted. Changes in expression of α-tubulin and atg8 genes had clearly defined doseand time-dependent nature. Overexpression of tub4 and atg8a shown at time points of 3 and 24 h after irradiation indirectly testifies to the interaction between the structural units of autophagosomes and microtubules. Expression profiles of elp3/deacetylases, as well as hexokinases, denote the crucial role of α-tubulin acetylation for autophagic response - a stage preceding the development of programmed cell death.

Keywords: atg8, autophagy, programmed cell death, transcriptome analysis, UV-B, α-tubulin
References: 
  1. Bais, A.F., McKenzie, R.L., Bernhard, G., Aucamp, P.J., Ilyas, M., Madronich, S. & Tourpali, K. (2015). Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci., 14, No. 1, pp. 19-52. doi: https://doi.org/10.1039/C4PP90032D
  2. Jansen, M.A.K., Gaba, V. & Greenberg, B.M. (1998). Higher plants and UV-B radiation: Balancing damage, repair and acclimation. Trends. Plant. Sci., 3, No. 4, pp. 131-135. doi: https://doi.org/10.1016/S1360-1385(98)01215-1
  3. Rizzini, L., Favory, J.J., Cloix, C., Faggionato, D., O'Hara, A., Kaiserli, E., Baumeister, R., Schäfer, E., Nagy, F., Jenkins, G.I. & Ulm, R. (2011). Perception of UV-B by the Arabidopsis UVR8 protein. Science, 332, No. 6025, pp. 103-106. doi: https://doi.org/10.1126/science.1200660
  4. Brosché, M., Schuler, M.A., Kalbina, I., Connor, L. & Strid, Å. (2002). Gene regulation by low level UV-B radiation: identification by DNA array analysis. Photochem. Photobiol. Sci., 1, No. 9, pp. 656-664. doi: https://doi.org/10.1039/B202659G
  5. Yang Y., Wang H., Wang S., Xu, M., Liu, M., Liao, M., Frank, J. A., Adhikari, S., Bower, K. A., Shi, X., Ma, C. & Luo, J. (2012). GSK3β signaling is involved in ultraviolet B-induced activation of autophagy in epidermal cells. Int. J. Oncol., 41, No. 5, pp. 1782-1788. doi: https://doi.org/10.3892/ijo.2012.1620
  6. Kulms, D. & Schwarz, T. (2002). Independent contribution of three different pathways to ultraviolet-B-induced apoptosis. Biochem. Pharmacol., 64, No. 5-6, pp. 837-841. doi: https://doi.org/10.1016/S0006-2952(02)01146-2
  7. Lytvyn, D.I., Yemets, A.I. & Blume, Y.B. (2012). UV-B overexposure induces programmed cell death in a BY-2 tobacco cell line. Environ. Exp. Bot., 68, No. 1, pp. 51-57. doi: https://doi.org/10.1016/j.envexpbot.2009.11.004
  8. Krasylenko, Yu.A., Yemets, A.I., Sheremet, Ya.A. & Blume, Ya.B. (2012). Nitric oxide as a critical factor for perception of UV-B irradiation by microtubules in Arabidopsis. Physiol. Plant., 145, pp. 505-515. doi: https://doi.org/10.1111/j.1399-3054.2011.01530.x
  9. Krasylenko, Yu.A., Yemets, A.I., Blume, Ya.B. (2013). Plant microtubules reorganization under inderect influence of enhanced UV-B irradiation and during UV-B induced programmed cell death. Plant Signal. Behav., 8, No. 5, e24031. doi: https://doi.org/10.4161/psb.24031
  10. Geeraert, C., Ratier, A., Pfisterer, S.G., Perdiz, D., Cantaloube, I., Rouault, A., Pattingre, S., Proikas-Cezanne,
  11. T., Codogno, P. & Poüs, C. (2012). Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation. J. Biol. Chem., 285, No. 31, pp. 24184-24194.
  12. Olenieva, V., Lytvyn, D., Yemets, A., Bergounioux, C. & Blume, Y. (2017). Tubulin acetylation accompanies autophagy development induced by different abiotic stimuli in Arabidopsis thaliana. Cell Biol. Int. doi: https://doi.org/10.1002/cbin.10843
  13. Pastorino, J.G. & Hoek, J.B. (2008). Regulation of hexokinase binding to VDAC. J. Bioenerg. Biomembr., 40, No. 3, pp. 171-182. doi: https://doi.org/10.1007/s10863-008-9148-8
  14. Creppe, C., Malinouskaya, L., Volvert, M.L., Gillard, M., Close, P., Malaise, O., Laguesse, S., Cornez, I., Rahmouni, S., Ormenese, S., Belachew, S., Malgrange, B., Chapelle, J.P., Siebenlist, U., Moonen, G., Chariot, A. & Nguyen, L. (2009). Elongator controls the migration and differentiation of cortical neurons through acetylation of α-tubulin. Cell., 136, No. 3, pp. 551-564. doi: https://doi.org/10.1016/j.cell.2008.11.043
  15. Tran, H.T., Nimick, M., Uhrig, R.G., Templeton, G., Morrice, N., Gourlay, R., DeLong, A. & Moorhead, G.B. (2012). Arabidopsis thaliana histone deacetylase 14 (HDA14) is an α-tubulin deacetylase that associates with PP2A and enriches in the microtubule fraction with the putative histone acetyltransferase ELP3. Plant J., 71, No. 2, pp. 263-272. doi: https://doi.org/10.1111/j.1365-313X.2012.04984.x
  16. Lee, J.Y., Koga, H., Kawaguchi, Y., Tang, W., Wong, E., Gao, Y.S., Pandey, U.B., Kaushik, S., Tresse, E., Lu, J., Taylor, J.P., Cuervo, A.M. & Yao, T.P. (2010). HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J., 29, No. 5, pp. 969-980. doi: https://doi.org/10.1038/emboj.2009.405