Kamenetsk impact structure on the Ukrainian Shield

Gurov, EP, Nikolaenko, NA, Shevchuk, HA, Yamnichenko, AY
Dopov. Nac. akad. nauk Ukr. 2018, 1:53-59
https://doi.org/10.15407/dopovidi2018.01.053
Section: Geosciences
Language: Russian
Abstract: 

The Kamenetsk impact structure is a deeply eroded simple bowl-shaped crater 1.1-1.2 km in diameter, located in the basin of the Ingul river on the southern slope of the Ukrainian Shield. Determination of characteristic features of the shock metamorphism in the rocks of the Kamenetsk structure proves its impact origin and refutes the idea of its endogenous nature. Deep erosion of the crater allows us to assume its ancient, probably, Paleozoic age. The Kamenetsk crater is the eighth impact structure discovered in the Ukrainian Shield.

Keywords: impact structure, lithic breccia, planar deformation features, shock metamorphism
References: 
  1. Romaniuk, P. A., Vasilenko, E. C., Kornienko, A. I. & Nikolaienko, N. A. (2006). Kamenetskaya structure — a new paleovolcanic edifice on the Ukrainian Shield: results of the preliminary study and comparative characteristic. Zb. nauk. prats UkrDGRI, No. 2, pp. 32-45 (in Ukrainian).
  2. Nikolaenko, N. A. (2009). Prospecting of uranium deposits of hydrothermal-stockwork type of scale 1:25000 within the Rozanivskaya area (45 km2). Archives of the Municipal Company "Kirovgeologiya" (in Ukrainian).
  3. Pankratov, I. N., Nikolenko, K. I. & Vorobey, A. N. (1995). Deep geological mapping of scale 1:200000 of the area of the map sheets M-36-XXXIII, L-36-III. State Scientic-Manufacturing Company "Geoinform Ukrainy" (in Russian).
  4. Stöffler, D. & Langenhorst F. (1994). Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteorit. Planet. Sci., 29, pp. 155-181. doi: https://doi.org/10.1111/j.1945-5100.1994.tb00670.x
  5. French, B. N. (1998). Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI Contributions No. 954, Houston, Texas: Lunar and Planetary Institute.
  6. Stöffler, D. (1971). Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters. J. Geophys. Res., 76, No. 23, pp. 5541-5551. doi: https://doi.org/10.1029/JB076i023p05541
  7. French, B. N. & Koeberl, C. (2010). The convincing identification of terrestrial meteorite impact structures: What works, what doesn't, and why. Earth-Sci. Rev., 98, pp. 123-170. doi: https://doi.org/10.1016/j.earscirev.2009.10.009
  8. Masaitis, V. L., Danilin, A. N., Maschak, M. S., Raykhlin, A. I., Selivanovskaya, T. V. & Shadenkov, E. M. (1980). Geology of astroblemes. Leningrad: Nedra (in Russian).
  9. Grieve, R. A. F. (1987). Terrestrial impact structures. Annu. Rev. Earth Planet. Sci., 15, pp. 245-270. doi: https://doi.org/10.1146/annurev.ea.15.050187.001333
  10. Earth Impact Database (2017). Retrieved from http://www.passc.net
  11. Grieve, R. A. F. & Robertson, P. B. (1979). The terrestrial cratering record. I. Current status of observations. Icarus, 38, pp. 212-229. doi: https://doi.org/10.1016/0019-1035(79)90179-9
  12. Kring, D. A. (2007). Guidebook to the geology of Barringer Meteorite Crater, Arizona (a.k.a. Meteor Crater). LPI Contribution No. 1355. Houston, Texas: Lunar and Planetary Institute.
  13. Chen, M., Xiao, W., Xie, X., Tan, D. & Cao, Y. (2010). Xiuyan crater, China: Impact origin confirmed. Chin. Sci. Bull., 55, Iss. 17, pp. 1777-1781. doi: https://doi.org/10.1007/s11434-010-3010-1
  14. International chronostratigraphic chart. 2016. International Commission on Stratigraphy. Retrieved from http://www.stratigraphy.org/index.php.ics-chart-timescale
  15. Gurov, E. P. & Gurova, E. P. (1991). Geological structure and material composition of the rocks of impact structures. Kiev: Naukova Dumka (in Russian).