Role of specific phospholipase D isoenzymes in biological action of jasmonic acid during plant stress responses

Kolesnikov, YS, 1Kretynin, SV
1Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2018, 10:95-102
https://doi.org/10.15407/dopovidi2018.10.095
Section: Biology
Language: Ukrainian
Abstract: 

The aim of our investigation was to investigate the role of specific phospholipase D (PLD) isoenzymes in the biological action of jasmonic acid during plant responses to heavy metal stress. Plant growth responses and the PLD activity in vivo are analyzed in Arabidopsis thaliana transgenic plants in order to investigate the role of specific PLD isoenzymes in the biological action of jasmonic acid during the development of plant resistance to heavy metal (copper, cadmium) stress. The results suggest the participation of PLDb in early stages of the biological action of jasmonic acid.

Keywords: Arabidopsis thaliana, cadmium, copper, isoenzyme, jasmonic acid, phosphatidic acid, phospholipase D, plants
References: 
  1. Dovgalyuk, A. (2013). Environmental contamination by toxic metals and its indication by plant test systems. Biol. studii, 7, No. 1, pp. 197-204 (in Ukrainian). doi: https://doi.org/10.30970/sbi.0701.269
  2. Hong, Y., Zhao, J., Guo, L., Kim, S. C., Deng, X., Wang, G., Zhang, G., Li, M. & Wang, X. (2016). Plant phospholipases D and C and their diverse functions in stress responses (Review). Prog. Lipid Res., 62, pp. 55-74. doi: https://doi.org/10.1016/j.plipres.2016.01.002
  3. Iakimova, E. T., Michaeli, R. & Woltering, E. J. (2013). Involvement of phospholipase D-related signal transduction in chemical-induced programmed cell death in tomato cell cultures. Protoplasma, 250, No. 5, pp. 1169-1183. doi: https://doi.org/10.1007/s00709-013-0497-8
  4. Zhao, J., Wang, C., Bedair, M., Welti, R., Sumner, L. W., Baxter, I. & Wang, X. (2011). Suppression of phospholipase Dγs confers increased aluminum resistance in Arabidopsis thaliana. PLoS ONE, 6, No. 12, e28086. doi: https://doi.org/10.1371/journal.pone.0028086
  5. Maksymiec, W. & Krupa, Z. (2002). Jasmonic acid and heavy metals in Arabidopsis plants — a similar physiological response to both stressors? J. Plant Physiol., 159, No. 5, pp. 509-515. doi: https://doi.org/10.1078/0176-1617-00610
  6. Cenzano, A., Cantoro, R., Racagni, G., De Los Santos-Briones, C., Hernández-Sotomayor, T. & Abdala, G. (2008). Phospholipid and phospholipase changes by jasmonic acid during stolon to tuber transition of potato. Plant Growth Regul., 56, No. 3, pp. 307-316. doi: https://doi.org/10.1007/s10725-008-9311-6
  7. Profotová, B., Burketová, L., Novotná, Z., Martinec, J. & Valentová, O. (2006). Involvement of phospholipases C and D in early response to SAR and ISR inducers in Brassica napus plants. Plant Physiol. Biochem., 44, No. 2-3, pp. 143-151. doi: https://doi.org/10.1016/j.plaphy.2006.02.003
  8. Altúzar-Molina, A. R., Muñoz-Sánchez, J. A., Vázquez-Flota, F., Monforte-González, M., Racagni-Di Palma, G. & Hernández-Sotomayor, S. M. (2011). Phospholipidic signaling and vanillin production in response to salicylic acidand methyl jasmonate in Capsicum chinense J. cells. Plant Phys. Biochem., 49, No. 2, pp. 151-158. doi: https://doi.org/10.1016/j.plaphy.-2010.11.005
  9. Chen, J., Sonobe, K., Ogawa, N., Masuda, S., Nagatani, A., Kobayashi, Y. & Ohta, H. (2013). Inhibition of arabidopsis hypocotyl elongation by jasmonates is enhanced under red light in phytochrome B dependent manner. J. Plant Res., 126, No. 1, pp. 161-168. doi: https://doi.org/10.1007/s10265-012-0509-3
  10. Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, pp. 604-611. doi: https://doi.org/10.1007/s10265-012-0509-3
  11. Pejchar, P., Potocký, M., Novotná, Z., Veselková, S., Kocourková, D., Valentová, O., Schwarzerová, K., Martinec, J. (2010). Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells. New Phytol., 188, pp. 150-160. doi: https://doi.org/10.1111/j.1469-8137.2010.03349.x
  12. Maksymiec, W., Wójcik, M. & Krupa, Z. (2007). Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere, 66, No. 3, pp. 421-427. doi: https://doi.org/10.1007/s10265-012-0509-3
  13. Zhao, J., Devaiah, S. P., Wang, C., Li, M., Welti, R. & Wang, X. (2013). Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. New Phytol., 199, No. 1, pp. 228-240. doi: https://doi.org/10.1111/nph.12256
  14. Zhang, Q., Berkey, R., Blakeslee, J. J., Lin, J., Ma, X., King, H., Liddle, A., Guo, L., Munnik, T., Wang, X. & Xiao, S. (2018). Arabidopsis phospholipase Dα1 and Dδ oppositely modulate EDS1- and SA-independent basal resistance against adapted powdery mildew. J. Exp. Bot. doi: https://doi.org/0.1093/jxb/ery146