Extreme temperature effects on the ultrastructure of mitochondria of mesophyll cells in Triticum spelta leaves

1Babenko, LM, Vodka, MV, Akimov, YN, Babenko, AV, 1Kosakivska, IV
1M. G. Kholodny Institute of Botany of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2018, 10:120-126
Section: Ecology
Language: Russian

The effects of high (40 °C, 2 h) and positive low (4 °C, 2 h) temperatures on the ultrastructure of mitochon d ria of the mesophyll cells in Triticum spelta L. leaves are analyzed. Control plants are shown to have round mitochondria and are characterized by an electrondense matrix and the presence of numerous developed laminar cristae. Under conditions of hyperthermia, mitochondria were "swollen", the crystal membranes became less contrast, the electron density of the matrix decreased, and the number of mitochondria increased. With hypothermia up to 40 %, the mitochondria retained a rounded shape, and organelles of "lenticular", "dumbbell", and "cupshaped" forms appeared. The number of mitochondria in the diametrical section of a cell did not change. Changing in the shape of the organelles led to an increase in the area of their surface, which probably promotes the metabolites exchange with cytoplasm and thus contributes to the increased stress tolerance.

Keywords: mitochondria, temperature stress, Triticum spelta
  1. Hatfield, J. & Prueger, J. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, pp. 4-10 doi: https://doi.org/10.1016/j.wace.2015.08.001
  2. Taylor, N. L., Heazlewood, J. L., Day, D. A. & Millar, A. H. (2005). Differential impact of environmental stresses on the pea mitochondrial proteome. Mol. Cell. Proteomics, 4, pp. 1122-1133. doi: https://doi.org/10.1074/mcp.M400210-MCP200
  3. Pareek, A., Singla, S. & Grover, A. (1997). Short-term salinity and high temperature stress associated ultrastructural alterations in young leaf cells of Oryza sativa L. Ann. Bot. 80, pp. 629-639. doi: https://doi.org/10.1006/anbo.1997.0494
  4. Ciamporova, M. & Mistrik, I. (1993). The ultrastructural response of root cells to stressful conditions. Environ. Exp. Bot., 33, pp. 11-26. doi: https://doi.org/10.1016/0098-8472(93)90052-H
  5. Stefanowska, M., Kuraś, M. & Kacperska, A. (2002). Low temperature induced modifications in cell ultrastructure and localization of phenolics in winter oilseed rape (Brassica napus L. var. oleifera) leaves. Ann. Bot., 90, pp. 637-645. doi: https://doi.org/10.1093/aob/mcf241
  6. Ristic, Z. & Ashworth, E. (1993). Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heynh) cv. Columbia during rapid cold acclimation. Protoplasma. 172, pp. 111-123. doi: https://doi.org/10.1007/BF01379368
  7. Armstrong, A. F., Logan, D. C., Tobin, A. K., O'Toole, P. & Atkin, O. K. (2006). Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant Cell Environ., 29, pp. 940-949. doi: https://doi.org/10.1111/j.1365-3040.2005.01475.x
  8. Babenko, L. M., Scherbatiuk, N. N., Klimchuk, D. A. & Kosakovskaya, I. V. (2018). Structural-functional peculiarities of leaf mesophyll cells of triticum aestivum cultivars with different cold/heat tolerance under short-term temperature stresses. Tsitologya, 60, No. 2, pp. 128-135 (in Russian). doi: https://doi.org/10.31116/tsitol.2018.02.08
  9. Rurek, M. (2014). Plant mitochondria under a variety of temperature stress conditions. Mitochondrion, 19, Pt. B, pp. 289-294. doi: https://doi.org/10.1016/j.mito.2014.02.007
  10. Logan, D. C. & Leaver, C. J. (2000). Mitochondria-targeted GFP highlights the heterogeneity of mito chondrial shape, size and movement within living plant cells. J. Exp. Bot., 51, pp. 865-871. doi: https://doi.org/10.1093/jexbot/51.346.865
  11. Kratsch, H. A. & Wise, R. R. (2000). The ultrastructure of chilling stress. Plant Cell Environ., 23, pp. 337-350. doi: https://doi.org/10.1046/j.1365-3040.2000.00560.x
  12. Vella, G. F., Joss, T. V. & Roberts, T. H. (2012). Chilling-induced ultrastructural changes to mesophyll cells of Arabidopsis grown under short days are almost completely reversible by plant rewarming. Protoplasma, 249, pp. 1137-1149. doi: https://doi.org/10.1007/s00709-011-0363-5
  13. Venzhik, Yu. V., Titov, A. F. & Talanova, V. V. (2017). Short-term chilling of wheat seedlings or roots affects the ultrastructure of mesophyll cells. Trudy Karelskogo nauchnogo tsentra RAN, 5, pp. 66-78 (in Russian).
  14. Yoshinaga, K., Arimura, S., Niwa, Y., Tsutsumi, N., Uchimiya, H. & Kawai Yamada, M. (2005). Mitochondrial behaviors in the early stages of ROS stress leading to cell death in Arabidopsis thaliana. Ann. Bot., 96, pp. 337-342. doi: https://doi.org/10.1093/aob/mci181
  15. Theocharis, A., Clement, C. & Barka, E. A. (2012). Physiological and molecular changes in plants grown at low temperatures. Planta, 235, pp. 1091-1105. doi: https://doi.org/10.1007/s00425-012-1641-y