On the regularity of solutions of quasilinear Poisson equations

1Gutlyanskii, VYa., 1Nesmelova, OV, 1Ryazanov, VI
1Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Sloviansk
Dopov. Nac. akad. nauk Ukr. 2018, 10:9-17
Section: Mathematics
Language: English
We study the Dirichlet problem for quasilinear partial differential equations of the form $\Delta u(z) = h(z)f (u(z))$ in the unit disk $\mathbb{D} \subset  \mathbb{C}$ with continuous boundary data. Here, the function $h : \mathbb{D} \rightarrow  \mathbb{R}$ belongs to the class $L^{p}(\mathbb{D})$, $p > 1$, and the continuous function $f : \mathbb{R} \rightarrow  \mathbb{R}$ is assumed to have the nondecreasing $| f |$ of $| t |$ and such that $f (t) / t\rightarrow 0$ as $t \rightarrow \infty$. We prove the existence of a continuous solution $u$ of the problem in the Sobolev class ${W_{loc}}^{2, p}(\mathbb{D})$. Moreover, we show that if $p > 2$, then $u \in {C_{loc}}^{1, \alpha }(\mathbb{D})$ with $\alpha = (p − 2) / p$ .
Keywords: Dirichlet problem, logarithmic and Newtonian potentials, potential theory, quasiconformal mappings, quasilinear Poisson equation, Sobolev classes
  1. Marcus, M. & Veron, L. (2014). Nonlinear second order elliptic equations involving measures. De Gruyter Series in Nonlinear Analysis and Applications (Vol. 21). Berlin: De Gruyter.
  2. Gutlyanskii, V. Ya. & Nesmelova, O. V. & Ryazanov V. I. (2017). On quasiconformal maps and semilinear equations in the plane. Ukr. Mat. Visn., 14, No. 2, pp. 161-191.
  3. Bojarski, B., Gutlyanskii, V., Martio, O. & Ryazanov, V. (2013). Infinitesimal geometry of quasiconformal and bi-lipschitz mappings in the plane. EMS Tracts in Mathematics (Vol. 19). Zürich: European Mathematical Society. doi: https://doi.org/10.4171/122
  4. Gutlyanskii, V., Ryazanov, V., Srebro, U. &Yakubov, E. (2012). The Beltrami equation: A geometric approach. Developments in Mathematics (Vol. 26). New York etc.: Springer. doi: https://doi.org/10.1007/978-1-4614-3191-6
  5. Martio, O., Ryazanov, V., Srebro, U. & Yakubov, E. (2009). Moduli in modern mapping theory. New York: Springer.
  6. Ladyzhenskaya, O. A. & Ural'tseva, N. N. (1968). Linear and quasilinear elliptic equations. New York-London: Academic Press.
  7. Hörmander, L. (1994). Notions of convexity. Progress in Mathematics (Vol. 127). Boston: Birkhäuser.
  8. Ransford, T. (1995). Potential theory in the complex plane. London Mathematical Society Student Texts (Vol. 28). Cambridge: Cambridge Univ. Press. doi: https://doi.org/10.1017/CBO9780511623776
  9. Sobolev, S. L. (1991). Some applications of functional analysis in mathematical physics. Math. Mon. (Vol. 90). Providence, RI: AMS.
  10. Hörmander, L. (1983). The analysis of linear partial differential operators. Vol. I. Distribution theory and Fourier analysis. Grundlehren der Mathematischen Wissenschaften. (Vol. 256). Berlin: Springer-Verlag.
  11. Vekua, I. N. (1962). Generalized analytic functions, London-Paris-Frankfurt: Pergamon Press, Addison-Wesley, Reading, Mass.
  12. Gilbarg, D. &Trudinger, N. (1983). Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften. (Vol. 224). Berlin: Springer. doi: https://doi.org/10.1007/978-3-642-61798-0
  13. Koosis, P. (1998). Introduction to Hp spaces. Cambridge Tracts in Mathematics (Vol. 115). Cambridge: Cambridge Univ. Press.
  14. Leray, J. & Schauder, Ju. (1934). Topologie et equations fonctionnelles. Ann. Sci. Ecole Norm., Sup. 51, No. 3, pp. 45-78; (1946). Topology and functional equations, Uspehi Matem. Nauk (N.S.). 1, No. 3-4, pp.71-95.
  15. Dunford, N. & Schwartz, J. T. (1958). Linear operators. I. General theory. Pure and Applied Mathematics (Vol. 7). New York, London: Interscience Publishers.