On the evolution of the prefracture zone near the crack tip in a nonlinear anisotropic body

TitleOn the evolution of the prefracture zone near the crack tip in a nonlinear anisotropic body
Publication TypeJournal Article
Year of Publication2018
AuthorsKaminsky, AA, Kurchakov, EE
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2018.10.044
Issue10
SectionMechanics
Pagination44-55
Date Published10/2018
LanguageRussian
Abstract

A boundary-value problem in terms of the displacement vector components for the equilibrium state of a non linear elastic orthotropic body with a crack of normal separation is stated with regard for its prefracture zone. As a result of the numerical solution of the problem, the evolution of this zone under the loading is shown. The deformation field near the crack tip is studied.

Keywordsconstitutive equations, crack of normal separation, nonlinear elastic orthotropic body, prefracture zone
References: 
  1. Kaminsky, A. A. & Kurchakov, E. E. (2015). Influence of tension along a mode I crack in an elastic body on the formation of a nonlinear zone. Int. Appl. Mech., 51, No. 2, pp. 130-148. doi: https://doi.org/10.1007/s10778-015-0679-5
  2. Kaminsky, A. A. & Bogdanova, O. S. (1995). Long-term crack-resistance of orthotropic viscoelastic plate under biaxial loading. Int. Appl. Mech., 31, No. 9, pp. 747-753. doi: https://doi.org/10.1007/BF00846862
  3. Bogdanova, O. S., Kaminsky, A. A. & Kurchakov, E. E. (2017). On the fracture process zone near the front of an arbitrary crack in a solid. Dopov. Nac. akad. nauk Ukr., No. 5, pp. 25-33. doi: https://doi.org/10.15407/dopovidi2017.05.025 (in Russian).
  4. Kurchakov, E. E. (2015). Thermodynamic verification of constitutive equations for a nonlinear anisotropic body. Dopov. Nac. akad. nauk Ukr., No. 9, pp. 46-53 (in Russian). doi: https://doi.org/10.15407/dopovidi2015.09.046
  5. Love, A. (1927). Treatise on the mathematical theory of elasticity. Cambridge: Univ. Press.
  6. Kurchakov, E. E. (1979). Stress-strain relation for nonlinear anisotropic medium. Sov. Appl. Mech., 15, No. 9, pp. 803-807. doi: https://doi.org/10.1007/BF00885391