Water bounding peculiarities in SiO2/laevomycetin and SiO2/laevomycetin/AM1 composite systems

1Krupskaya, TV, Rugal, AO, 1Turov, VV
1O. O. Chuiko Institute of Surface Chemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2018, 10:72-78
https://doi.org/10.15407/dopovidi2018.10.072
Section: Chemistry
Language: Russian
Abstract: 

Water bounding in a silicabased system containing adsorbed laevomycetin:(SiO2/ laevomycetin) and SiO2/ laevomycetin with addition AM1(methylsilica) are studied by lowtemperature 1H NMR spectroscopy. It is re vealed that the laevomycetin immobilization leads to a certain extent of hydrophilic properties and the amount of bounded water. It is shown that the replacement of air by liquid media (CDCl3) initiates increasing the interfacial energy up to 30 %. For the same time, the addition of AM1 into the mentioned system led to the quadruplication of the interfacial energy. Consequently, this is a promising way to use such systems for the creation of retarded drugs.

Keywords: interfacial energy, laevomycetin, lowtemperature 1H NMR spectroscopy, methylsilica, nanosilica
References: 
  1. Gun'ko, V. M., Mironyuk, I. F., Zarko, V. I., Turov, V. V., Voronin, E. F., Pakhlov, E. M., Goncharuk, E. V., Leboda, R., Skubiszewska-Zięba, J., Janusz, W., Chibowski, S., Levchuk, Yu. N. & Klyueva, A. V. (2001). Fumed silicas possessing different morphology and hydrophilicity. J. Colloid Interface Sci., 242, pp. 90-103. doi: https://doi.org/10.1006/jcis.2001.7736
  2. US 446988, A23J3/20, Edible protein containing substances, Towersey, P.J., Longton, J., Cockram, G. M.., Publ. 21.08.1984.
  3. Basic characteristics of aerosil. (1997). Technical Bulletin Pigments. No. 11. Hanau: Degussa AG.
  4. Chuiko, A. A. (Ed.). (2003). Medical chemistry and clinical application of silica dioxide. Kiev: Naukova Dumka (in Russian).
  5. Turov, V. V., Geraschenko, I. I., Krupska, T. V. & Suvorova, L. P. (2017). In Kartel, M. T. (Ed.). Nanochemisrty in problems solving of endo- and exoecology. Stavropol: Zebra (in Russian).
  6. Krupskaya, T. V., Turov V. V., Barvinchenko, V. M., Filatova, K. O., Suvorova, L. A., Iraci, G. & Kartel, M. T. (2018). Influence of the “wetting-drying” compaction on the adsorptive characteristics of nanosilica A-300. Adsorpt. Sci. Technol., 36, Iss. 1-2, pp. 300-310. doi: https://doi.org/10.1177/0263617417691768
  7. Krupskaya, T. V., Barvinchenko, V. M., Kaspersky, V. A. & Turov, V. V. (2007). Molecular interactions in laevomycetin-water-silica system., Ukr. Khim. Zhurn., 73, No. 7, pp. 20-26 (in Russian).
  8. Turov, V. V. & Gun'ko, V. M. (2011). The contribution of clusterized water to the ways of its usage. Kiev: Naukova Dumka (in Russian).
  9. Gun'ko, V. M. & Turov, V. V. (2013). Nuclear magnetic resonance studies of interfacial phenomena. New York: Taylor & Francis. doi: https://doi.org/10.1201/b14202
  10. Glushkov, V. P. (Ed). (1978). Thermodynamic properties of the individual substancesveschestv. Moscow: Nauka (in Russian).
  11. Petrov, O. V. & Furo, I. (2009). NMR cryoporometry: principles, application and potential. Prog. Nucl. Magn. Reson. Spectrosc., 54, pp. 97-122. doi: https://doi.org/10.1016/j.pnmrs.2008.06.001
  12. Turov, V. V. & Mironyuk, I. F. (1998). Adsorption layers of water on the surface of hydrophilic, hydrophobic and mixed silicas. Colloids Surf. A. Physicochem. Eng. Asp., 134, Iss. 3, pp. 257-263. doi: https://doi.org/10.1016/S0927-7757(97)00225-2