Anion-active polyurethanes with increased content of renewable raw materials

1Travinskaya, TV, 1Brykova, AN, 1Savelyev, Yu.V, 1Lebedev, EV
1Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2018, 11:76-83
Section: Chemistry
Language: Ukrainian

Anionic polyurethanes (APU) degradable under environmental conditions have been synthesized on the basis of modified reactive oligomers produced by the glycerolysis reaction of palm (PO) and soybean (SO) oils without the use of harmful reagents, as well as natural castor oil (CO) and exopolysaccharide Xanthan (Xa). The mass fraction of natural components in synthesized polyurethanes amounts 70 %. The relationship between the component composition of Xa-containing polyurethanes on the basis of different vegetable oils and colloi dalchemical properties of dispersions, physico-mechanical and thermal properties of the films, and their ability to the degradation have been investigated.

Keywords: anion-active polyurethanes, degradation, vegetable oils, xanthan
  1. Ionescu, M. (2005). Polyester polyols for elastic polyurethanes. Chemistry and technology of polyols for polyurethanes (pp. 263-294), Shawbury: Rapra Technology Limited.
  2. Philipp, C. & Eschig, S. (2012). Waterborne polyurethane wood coatings based on rapeseed fatty acid methyl esters. Prog. Org. Coat., 74, Iss. 4, pp. 705-711. doi:
  3. Miao, S., Wang, P., Su, Z. & Zhang, S. (2014). Vegetable-oil-based polymers as future polymeric biomaterials: a review. Acta Biomater., 10, No. 4, pp. 1692-1704. doi:
  4. Williams, C. K. & Hillmyer, M. A. (2008). Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym. Rev., 48, Iss. 1, pp. 1-10. doi:
  5. Petrović, Z. S. (2008). Polyurethanes from vegetable oils. Polym Rev., 48, Iss. 1, pp. 109-155. doi:
  6. Szycher, M. (1999). Rigid polyurethane foams. Szycher's handbook of polyurethanes (pp. 257-308), Boca Raton: CRC Press.
  7. Zhang, C., Garriso, T. F., Madbouly, S. A. & Kessler, M. R. (2017). Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci., 71, pp. 91-143. doi:
  8. Desroches, M., Escouvois, M., Auvergne, R., Caillol, S. & Boutevin, B. (2012). From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym. Rev., 52, Iss. 1, pp. 38-79. doi:
  9. Alagi, P., Choi, Y. J. & Hong, S. C. (2016). Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane. Eur. Polym. J., 78, pp. 46-60. doi:
  10. Ong, A. S. & Goh, S. H. (2002). Palm oil: a healthful and cost-effective dietary component. Food Nutr. Bull., 23, No. 1, pp. 11-22. doi:
  11. Ferreira, G. R., Braquehais, J. R., Silva, W. N. & Machado, F. (2015). Ind. Crop. Prod., 65, pp. 14-20. doi:
  12. Starukh, G. N., Levytska, S. I., Shistka, D. V. & Brei, V. V. (2010). Transesterification of rapeseed oil by glycerol over basic oxides. Khimiia, fizyka ta tekhnologiia poverkhni, 1, No. 2, pp. 194-199 (in Russian).
  13. Travinskaya, T. V., Brykova, A. N. & Savelyev, Yu. V. (2016). Degradable ionic polyurethanes based on vegetable oil and polysaccharide: preparation and properties. Dopov. Nac. acad. nauk Ukr., No. 12, pp. 82-89 (in Ukrainian). doi:
  14. Travinskaya, T. V., Brykova, A. N., Bortnitsky, V. I. & Savelyev, Yu. V. (2014). Preparation and properties of (bio)degradable ionomeric polyurethanes based on xanthan. Polim. Zhurn., 36, No. 4, pp. 393-400 (in Russian).
  15. Yanovych, I. V., Akhranovych, O. R., Markovska, L. A., Bortnitskii, V. I., Dmitrieva, T. V. & Savelyev, Yu. V. (2012). Polyurethane foams based on natural polysaccharides: thermal mass spectrometry. Polim. Zhurn., 34, No. 1, pp. 68-74 (in Russian).