Influence of cesium cations on the formation of phosphates in aqueous solutions of the system Ca2+—Cs+—M+—PO43–—NO3 (M+ — Na+, K+)

1Livitska, OV, 1Strutynska, NYu., 1Slobodyanik, MS
1Taras Shevchenko National University of Kyiv
Dopov. Nac. akad. nauk Ukr. 2018, 11:68-75
https://doi.org/10.15407/dopovidi2018.11.068
Section: Chemistry
Language: Ukrainian
Abstract: 

Peculiarities of the influence of cesium cations on the formation of calcium phosphates at the coprecipitation from aqueous solutions of the systems Ca2+—Cs+—M+—PO43–—NO3 (M+ — Na+, K+) (at the molar ratios Ca2+/PO43– = 1.67; M+/Cs+ = 1.0 and 2.0) have been investigated. The samples have been characterized using the powder X-ray diffraction method, FTIR-spectroscopy, scanning electron microscopy, and elemental ana lisys. It is found that cesium cations cause the formation of phases based on α-Ca3(PO4)2 at the precipitation from aqueous solutions.

Keywords: complex phosphates, coprecipitation, scanning electron microscopy, TG/DTA
References: 
  1. Boehm, A., Meininger, S., Tesch, A., Gbureck, U. & Müller, F. (2018). The mechanical properties of bio compatible apatite bone cement reinforced with chemically activated carbon fibers. Materials, 11, pp. 192-203. doi: https://doi.org/10.3390/ma11020192
  2. Haider, A., Haider, S., Han, S. S. & Kang, I.K. (2017). Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. RSC Adv., 7, pp. 442-7458. doi: https://doi.org/10.1039/C6RA26124H
  3. Bose, S. & Tarafder, S. (2012). Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomater., 8, pp. 1401-1421. doi: https://doi.org/10.1016/j.actbio.2011.11.017
  4. Miao, D., Cavusoglu, G., Lichtenberg, H., Yu, J., Xu, H., Grunwaldt, J. D. & Goldbach, A. (2017). Water-gas shift reaction over platinum/strontium apatite catalysts. Appl. Catal. B: Environ., 202, pp. 587-596. doi: https://doi.org/10.1016/j.apcatb.2016.09.059
  5. Gruselle, M. & Tonsuaadu, K. (2017). Tunable calcium-apatites as solid catalysts for classical organic reactions. Curr. Org. Chem., 21, pp. 688-697. doi: https://doi.org/10.2174/1385272821666161219155302
  6. Rosticher, C., Viana, B., Maldiney, Th., Richard, C. & Chanéac, C. (2016). Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging. J. Luminescence, 170, pp. 460-466. doi: https://doi.org/10.1016/j.jlumin.2015.07.024
  7. Oliva, J., De Pablo, J., Cortina, J. L., Cama, J. & Ayora, C. (2010). The use of Apatite II™ to remove divalent metal ions zinc(II), lead(II), manganese(II) and iron(II) from water in passive treatment systems: Column experiments. J. Hazard. Mater., 184, pp. 364-374.doi: https://doi.org/10.1016/j.jhazmat.2010.08.045
  8. Zhu, R., Yu, R., Yao, J., Mao, D., Xing, C. & Wang, D. (2008). Removal of Cd2+ from aqueous solutions by hydroxyapatites. Catal. Today., 139, pp. 94-99. doi: https://doi.org/10.1016/j.cattod.2008.08.011
  9. Oliva, J., De Pablo, J., Cortina, J. L., Cama, J. & Ayora, C. (2011). Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: Column experiments. J. Hazard. Mater., 194, pp. 312-323. doi: https://doi.org/10.1016/j.jhazmat.2011.07.104
  10. Rigali, M. J., Brady, P. V. & Moore, R. C. (2016). Radionuclide removal by apatite. Amer. Mineral., 101, pp. 2611-2619. doi: https://doi.org/10.2138/am-2016-5769
  11. Yashima, M., Sakai, A., Kamiyama, T. & Hoshikawa, A. (2003). Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. J. Solid State Chem., 175, pp. 272-277. doi: https://doi.org/10.1016/S0022-4596(03)00279-2
  12. Morozov, V. A., Belik, A. A., Kotov, R. N., Presnyakov, I. A., Khasanov, S. S. & Lazoryak, B.I . (2000). Crystal structures of double calcium and alkali metal phosphates Ca10M(PO4)7 (M = Li, Na, K). Crystallogr. Rep., 45, No. 1, pp. 13-20. doi: https://doi.org/10.1134/1.171129
  13. Mathew, M., Schroeder, L. W., Dickens, B. & Brown, W. E. (1977). The crystal structure of α-Ca3(PO4)2. Acta Crystallogr., B33, pp. 1325-1333. doi: https://doi.org/10.1107/S0567740877006037
  14. Malyshenko, A. I., Strutynska, N. Yu., Zatovsky, I. V., Slobodyanik, N. S., Epple, M. & Prymak, O. (2014). Synthesis of Na+,CO32--containing calcium phosphate nanoparticles and their thermal transformations. Funct. Mater., 21, pp. 333-337. doi: https://doi.org/10.15407/fm21.03.333
  15. Strutynska, N., Zatovsky, I., Slobodyanik, N., Malyshenko, A., Prylutskyy, Y., Prymak, O., Vorona, I., Ishchenko, S., Baran, N., Byeda, A. & Mischanchuk, A. (2015). Preparation, characterization, and thermal transformation of poorly crystalline sodium- and carbonate-substituted calcium phosphate. Eur. J. Inorg. Chem., pp. 622-629. doi: https://doi.org/10.1002/ejic.201402761