Effect of an argon matrix on the vibrational spectra of trapped water clusters

Vasylieva, AO, Doroshenko, IY, Pogorelov, VE, 1Bulavin, LA
1Taras Shevchenko National University of Kyiv
Dopov. Nac. akad. nauk Ukr. 2018, 12:46-50
https://doi.org/10.15407/dopovidi2018.12.046
Section: Physics
Language: Ukrainian
Abstract: 

Quantum-chemical calculations of infrared absorption spectra for different sized water clusters in different solvations are performed using the software Gaussian 03. The influence of the argon medium on the vibrational spectra of water clusters isolated in the argon matrix is determined, by comparing the obtained values of frequencies and intensities of spectral bands in water and argon solvations.

Keywords: argon, cluster, matrix isolation, vibrational spectroscopy, water
References: 
  1. Ceponkus, J., Uvdal, P. & Nelander, B. (2012). Water Tetramer, Pentamer, and Hexamer in Inert Matrices. J. Chem. Phys A, 116, pp. 4842-4850. doi: https://doi.org/10.1021/jp301521b
  2. Mishchuk, O., Doroshenko, I., Sablinskas, V. & Balevicius, V. (2016). Temperature evolution of cluster structure in n-hexanol, isolated in Ar and N2 matrices and in condensed states. Structural Chemistry, 27, No. 1, pp. 243-248. doi: https://doi.org/10.1007/s11224-015-0692-7
  3. Pitsevich, G., Doroshenko, I., Pogorelov, V., Pettersson, L. G. M., Sablinskas, V. et al. (2016). Combinatorial mechanism of broadening of IR absorption bands of valence O-H vibrations in molecular clusters with hydrogen bonds. J. Appl. Spectroscopy, 82, No. 3, pp. 354-361 (in Russian). doi: https://doi.org/10.1007/s10812-016-0293-2
  4. Pogorelov, V., Doroshenko, I., Uvdal, P., Balevicius, V. & Sablinskas, V. (2010). Temperature-controlled kinetics of the growth and relaxation of alcohol clusters in an argon matrix. Mol. Phys., 108, pp. 2165-2170. doi: https://doi.org/10.1080/00268976.2010.494629
  5. Pogorelov, V., Doroshenko, I., Pitsevich, G., Balevicius, V., Sablinskas, V., Krivenko, B. & Pettersson, L. G. M. (2017). From clusters to condensed phase — FT IR studies of water. J. Mol. Liq., 235, pp. 7-10. doi: https://doi.org/10.1016/j.molliq.2016.12.037
  6. Pogorelov, V. & Doroshenko, I. (2016). Vibrational spectra of clusters of water isolated in low-temperature matrices. Phys. low temperatures, 42, No.12, pp. 1487-1491 (in Russian). doi: https://doi.org/10.1063/1.4973401
  7. Nemukhin, A. V. (2000). Molecules in matrices and clusters. Soros Educational J., 6, pp. 27-31 (in Russian).
  8. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Za krzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Po ple, J. A. Gaussian 03; Gaussian, Inc.: Pittsburgh, PA, 2003.
  9. Chaplin M. (2017). Water structure and science. Last upd. Aug 14. http://www1.lsbu.ac.uk/water/water_anomalies.html.