Fragmentation of a PTCDA molecule by electron impact

1Shpenik, OB, 1Pylypchynets, OV, 1Zavilopulo, AM
1Institute of Electronic Physics of the NAS of Ukraine, Uzhhorod
Dopov. Nac. akad. nauk Ukr. 2018, 2:43-49
Section: Physics
Language: Ukrainian

The dissociative ionization of a 3,4,9,10-perylenetetracarboxilic dianhydride (PTCDA) molecule is investigated by the mass spectrometry method. It has been established that the basic process is the decay of a PTCDA molecule. The most intense in the mass spectrum are the fragment ions perylene core C20H8, its half C10H4, carbon dioxide, carbon monoxide, and atomic oxygen. The appearance energies of fragment ions O+ and CO+ are determined by the least-squares method (E = 10.61 eV for O+); (E = 11.54 eV for CO+). The temperature dependence of the most intense ions formation in the temperature range 320—500 K are measured at an electron energy of 80 eV.

Keywords: appearance energy, electron impact, fragment ions, ionization
  1. Di Ventra, M., Evoy, S. & Heflin, J. R. (Eds). (2004). Introduction to Nanoscale Science and Technology. Boston: Kluwer Academic Publishers. doi:
  2. Kukhta, A. V. (2003). J. Appl. Spectroscopy. 70, No. 2, pp. 151-176 (in Russian).
  3. Romanova, L, Zavilopulo, A., Kukhta, A. et al. (2009). Dissociative ionization of 1,4-bis(2,5-phenyloxazolyl) benzene. Inter. J. Mass Spectrometry, 279, pp. 10-14. doi:
  4. Kukhta, A. V., Kukhta, I. N., Zavilopulo, A. N., Agafonova, A. S. & Shpenik, O. B. (2009). Ionization of 4,4'-bis(phenylethynyl)- anthracene by electron impact. Eur. J. Mass Spectrom, 15, pp. 563-570. doi:
  5. Ramonova, A. G., Tvauri, I. V., Khubezhov, S. A., et al. (2015). Photoinduced decomposition of PTCDA molecules and desorption of their fragments from the films formed on the GaAs(110) surface. Russian J. Phys. Chemistry A., 89, pp. 1944-1947. doi:
  6. Dori, N., Menon, M., Kilian, L., et al. (2006). Valence electronic structure of gas-phase 3,4,9,10-perylene tetracarboxylic acid dianhydride: Experiment and theory, Phys. Rev. B, 73. 195208. doi:
  7. Cho, S. W., Newby, D., DeMasi, Jr. A., Smith, K. E., Piper, L. F. J. & Jones Citation T.S. (2013). Determination of the individual atomic site contribution to the electronic structure of 3,4,9,10-perylene-tetracarboxylicdianhydride (PTCDA). The J. Chem. Physics, 139. 184711). doi:
  8. Pshenychnyuk, S. A., Kukhta, A. V., Kukhta, I. N. & Komolov, A. C. (2011). J. Tech. Phys., Iss. 81, No. 6, pp. 8-13 (in Russian).
  9. Zavilopulo, A. N., Markush, P. P., Shpenik, O. B. & Mykyta, M. I. (2014). Electron Impact Ionization and Dissociative Ionization of Sulfur in the Gas Phase. Tech. Phys., 59. No. 7, pp. 951-958. doi:
  10. Lebedev, A. T. (2003). Mass Spectrometry in Organic Chemistry, Moscow: BINOM.
  11. Tichonov, E. V., Uspenskii, Yu. A. & Chochlov, D. P. (2013). J. Exper. Teor. Phys. Letters, 98, Iss. 1, pp. 17-22. doi: (in Russian).
  12. Marom, N., Ren, X., Moussa, J. E., Chelikowsky, J. R. & Kronik, L. (2011). Electronic structure of copper phtha locyanine from G0W0 calculations. Phys. Rev. B,. 84. 195143. doi: 195143
  13. Sharifzadeh, S., Biller, A. & Kronik, L. (2012). JB Neaton Quasiparticle and optical spectroscopy of the organic semiconductors pentacene and PTCDA from first principles. Phys. Rev. B, 85, 125307. doi:
  14. Blasé, X., Attaccalite, C. & Olevano, V. (2011). First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications. Phys. Rev. B, 83, 115103. doi: