DSC investigation of the influence of human placenta fractions on the thermal stability of protein complexes of erythrocyte membranes

1Govorova, Yu.S, 1Zinchenko, OV, 1Semenchenko, OYu., 1Bobrova, OM, 1Nardid, EO, 2Nardid, OA
1Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv
2Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv; V. N. Karazin Kharkiv National University
Dopov. Nac. akad. nauk Ukr. 2018, 3:116-122
Section: Biophysics
Language: Ukrainian

The effect of placenta extracts fractions on the thermal denaturation of erythrocyte membrane-bound proteins is investigated by differential adiabatic scanning calorimetry. Four transitions are registrated on a denaturation thermogram of white erythrocyte ghosts. Adding the placenta extracts fractions to the suspension of erythrocyte membrane-bound proteins leads to increasing the temperature of all protein groups except spectrin.

Keywords: differential scanning calorimetry, erythrocyte ghosts, placenta extracts fractions, thermal denaturation
  1. Parolini O., Soncini M. (2011). Placenta as a source of stem cells and as a key organ for fetomaternal tolerance. In Regenerative medicine using pregnancy-specific biological substances (pp. 11-23). London: Springer. doi: https://doi.org/10.1007/978-1-84882-718-9_2
  2. Wang, F., Wang, L., Xu, Zh. & Liang, G. (2013). Identification and analysis of multi-protein complexes in placenta. PLoS ONE, 8, No. 4. doi: https://doi.org/10.1371/journal.pone.0062988
  3. Nardid, O., Repina, S., Rozanova, E., Cherkashina, Ya. & Nardid, E. (2015). Properties of aqueous-saline human placental extracts and their fractions after storage of placenta at various subzero temperatures. J. Exp. Integr. Med., 5. No. 4, pp. 172-177. doi: https://doi.org/10.5455/jeim.231115.or.141
  4. Lyubarev, A. E. & Kurganov, B. I. (2000). The studing of irreversible protein denaturation by differential scanning calorimetry method. Uspehi biologicheskoy himii, 40, No. 1-3, pp. 43-84 (in Russian).
  5. Zinchenko, A. V., Bobrova, E. N., Govorova, Yu. S., Rozanova, E. D. & Karpenko, V. G. (2015). Effect of low temperature storage of human placenta on phase transitions in fractions of placental extracts and in mixtures of the fractions with cells. Probl. Cryobiol. Cryomed., 25, No. 2, pp. 122-130. doi: https://doi.org/10.15407/cryo25.02.122
  6. Ku, T., Lu, P., Chan, C., Wang, T., Lai, S. Lyu, P. & Hsiao, N. (2009). Predicting melting temperature directly from protein sequence. Comput. Biol. Chem., 33, pp. 445-450. doi: https://doi.org/10.1016/j.compbiolchem.2009.10.002
  7. Marangoni, A. G. & Suresh, S. N. (2002). Physical properties of lipids. Washington: CRC Press. doi: https://doi.org/10.1201/9780203909171
  8. Lapshina, E. I. & Zavodnik, I. B. (1994). Thermostability of erythrocyte membrains proteins with erythrocyte and medium compounds varying. Biophizika, 39, No. 6, pp. 1015-1020 (in Russian).
  9. Matveev, A. V., Akoev, V. R., Tarakhnovskii, Yu. S., Deev, A. A., Bryukhanov, V. M., Zhadan, G. G. & Shnyrov, V. L. (1997). A comparative study of structural transitions in erythrocyte membranes of adult donors and neonates. Bull. Exp. Biol. Med., 123, No. 2, pp. 196-200. doi: https://doi.org/10.1007/BF02766443
  10. Ivanov, I. T., Brahler, M., Georgieva, G. & Baumler, H. (2007). Role of the membrane proteins in thermal damage and necrosis of red blood cells. Thermochim. Acta, 456, No. 1, pp. 7-12. doi: https://doi.org/10.1016/j.tca.2007.01.020