The roof depth of the transition zone between upper and lower Earth's mantle

1Gordienko, VV
1S. I. Subbotin Institute of Geophysics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2018, 4:60-66
Section: Geosciences
Language: Russian

The experimental and calculated values of the roof depth of the transition zone between the upper and lower mantle of the Earth are compared. It is proved that this boundary corresponds to the beginning of polymorphic transformations of mantle's rocks. The magnitude of the jump in the velocity of longitudinal seismic waves at a level of 0.45 km/s is estimated. Changes in the depth of the roof due to temperature variations under the influence of the active heat and mass transfer according to the scheme of the advection-polymorphic hypothesis are studied. The approximate correspondence of the results (within the limits of calculation errors) to experimental data in different regions of the continents is demonstrated. Under the oceans, the situation remains uncertain now, mainly due to the differences in the experimental data of different authors.

Keywords: advection-polymorphic hypothesis, longitudinal seismic waves, mantle, seismic
  1. Gordienko, V. (2015). Essential points of the advection-polymorphism hypothesis. NCGT Journal, No. 2, pp.115-137.
  2. Gordienko, L. & Gordienko, V. (2016). P-wave velocities in the upper mantle beneath oceans. NCGT Journal. 4, No. 3, pp. 389-405.
  3. Yamazaki, A. & Hirahara, K. (1994). The thickness of upper mantle discontinuities, as inferred from shortperiod Jarray data. Geophys. Res. Lett., 21, No. 17, pp. 1811-1814. doi:
  4. Flanagan, M. & Shearer, P. (1999). A map of topography on the 410-km discontinuity from PP precursors. Geophys. Res. Lett., 26, No. 5, pp. 549-552. doi:
  5. Priestley, K., Cipar, J., Egorkin, A. & Pavlenkova, N. (1994). Upper-mantle velosity structure beneath Siberian platform. Geophes. J. Int. 118, pp. 309-378. doi:
  6. Gossler, J. & Kind, R. (1996). Seismic evidence for very deep roots of continents. Earth Plan. Sc. Lett., 138, pp. 113. doi:
  7. Melbourne, T. & Yelmberger, D. (1998). Fine structure of the 410-km discontinuity. J. Geophys. Res., 103, No. B5, pp. 10091-10102. doi:
  8. Frost, D. J. (2008). The upper mantle and transition zone. Elements. 4, pp. 171-176. doi:
  9. Gu, Y. J., Zhang, Y., Sacchi, M. D, Chen, Y. & Contenti, S. (2015). Sharp mantle transition from cratons to Cordillera in southwestern Canada. J. Geophys. Res. Solid Earth., 120, pp. 5051-5069. doi:
  10. Houser, C. & Williams, Q. (2010). Reconciling Pacific 410 and 660 km discontinuity topography, transition zone shear velocity patterns, and mantle phase transitions. Earth Planet. Sci. Lett., 296, pp. 255-266. doi:
  11. Julia, J. & Nyblade, A. (2013). Probing the upper mantle transition zone under Africa with P520s conversions: Implications for temperature and composition. Earth Planet. Sci. Lett., 368, pp. 151-162. doi:
  12. Swieczak, M., Grad, M., TOR & SVEKALAPKO Working Groups. (2004). Upper mantle seismic discontinuities topography variations beneath eastern Europe. Acta Geophys. Pol., 52, No. 3, pp.251-270.
  13. Tauzin, B., Debayle, E. & Wittlinger, G. Constraints on the mantle transition zone structure from P-to-Sv converted waves. Retrieved from
  14. Tauzin, B., van der Hilst, D., Wittlinger, G. & Ricard, Y. (2013). Multiple transition zone seismic discontinuities and low velocity layers below western United States. J. Geophys. Res. Solid Earth., 118, pp.2307-2322. doi:
  15. Thomas, Ñ. & Billen, M. (2009). Mantle transition zone structure along a profile in the SW Pacific: Thermal and compositional variations. Geophys. J. Int., 176, Iss. 1, pp.113-125. doi: