Electron impact ionization of tellurium in the gas phase

1Shpenik, OB, 1Zavilopulo, AM, 1Pylypchynets, OV
1Institute of Electronic Physics of the NAS of Ukraine, Uzhhorod
Dopov. Nac. akad. nauk Ukr. 2018, 5:44-52
Section: Physics
Language: Ukrainian

The processes of ionization of tellurium in the gas phase by the electron impact have been studied by mass spectrometry, by using the technique of intersecting beams. The mass spectra of tellurium are studied in the range of mass numbers 50—350 Da at various energies of ionizing electrons from 6 to 70 eV and in the temperature range 400—600 K. The mass spectrum consists of three groups of peaks corresponding to atomic Te+, molecular Te2+, and doubly charged Te2+ ions. It is shown that the ratio of the intensity of isotope peaks to the main one is conserved for both atomic and molecular ions. It is found that diatomic tellurium molecules prevail in the gas phase at experimental temperatures. The ionization functions of Te+, Te2+, and Te2+ ions and the energies of appearance and ionization of molecular and atomic tellurium ions are determined by the method of least squares over the threshold sections of the curves. For the first time in the mass spectra of tellurium, a doubly charged Te2+ ion is found, for which the energy dependence of the ionization by the electron impact is obtained, and the ionization energy E = 20.6 ± 0.25 eV is determined.

Keywords: electron impact, energy of appearance, ionization, tellurium
  1. Topouzkhanian, A., Wellegehausen, B., Effantin, C., D'incan, J. & Verges, J. (1983). New Continuous Laser Emissions in Te2, Laser Chem., 1, No. 5, pp. 195-209.
  2. Willey, K. F., Cheng, P. Y., Taylor, T. G., Bishop, M. B. & Duncan, M. A. (1990). Photoionization and Mass-Selected Photodlssociation of Tellurium Clusters. J. Phys. Chem., 94, No. 4, rr.1545-1549. doi: https://doi.org/10.1021/j100367a061
  3. Hearley, Andrew K., Johnson, Brian F.G., McIndoe, J. Scott & Tuck, Dennis G. (2002). Mass spectrometric identification of singly-charged anionic and cationic sulfur, selenium, tellurium and phosphorus species produced by laser ablation. Inorganica Chimica Acta, 334, rr. 105-112. doi: https://doi.org/10.1016/S0020-1693(02)00738-7
  4. Albeck, Michael & Shaik, Sason. (1975). Identification of Telurium-Containing Compounds by Means of Mass Spectrometry. J. of Organometalk Chem., 91, pp. 307-313. doi: https://doi.org/10.1016/S0022-328X(00)88997-4
  5. Snodgrass, J. T., Coe, J. V., McHugh, K. M., Freidhoff, C. B. & Bowen, K. H. (1989). Photoelectron Spectroscopy of Selenium- and Tellurium-Containing Negative Ions: Se0, Se, and Te. J. Phys. Chem., 93, pp. 1249-1254. doi: https://doi.org/10.1021/j100341a016
  6. Viswanathan, R., Balasubramanian, R., Raj, D. Darwin, Albert, Baba, M. Sai & Narasimhan, T.S. Lakshmi. (2014). Vaporization studies on elemental tellurium and selenium by Knudsen effusion mass spectrometry. J. Alloys and Compounds, 603, pp. 75-85. doi: https://doi.org/10.1016/j.jallcom.2014.03.040
  7. Kukhta, A. V., Kukhta, I. N., Zavilopulo, A. N., Agafonova, A. S. & Shpenik, O. B. (2009). Ionization of 4,4'-bis(phenylethynyl)- anthracene by electron impact. Eur. J. Mass Spectrom., 15. pp. 563-570. doi: https://doi.org/10.1255/ejms.1018
  8. NIST Standard Reference Database. (http://www.webbook.nist.gov)
  9. Shpenik, O. B., Erdevdy, M. M., Markush, P. P., Kontros, J. E. & Chernyshova, I. V. (2015). Electron Impact Excitation and Ionization of Sulfur, Selenium, and Tellurium Vapors. Ukr. J. Phys., 60, No. 3, pp. 217-223. doi: https://doi.org/10.15407/ujpe60.03.0217
  10. Freund, Robert S., Wetzel, Robert C., Shul, Randy J. & Hayes, Todd R. (1990). Cross-section measurements for electron-impact ionization of atoms. Phys. Rev. A., 41, pp. 3575-3590. doi: https://doi.org/10.1103/PhysRevA.41.3575
  11. Zavilopulo, A. N., Markush, P. P., Shpenik, O. B. & Mykyta, M. I. (2014). Electron Impact Ionization and Dissociative Ionization of Sulfur in the Gas Phase. Technical Physics., 59. No. 7. pp. 951-958. doi: https://doi.org/10.1134/S1063784214070299
  12. Zavilopulo, A. N., Shpenik, O. B. & Mylymko, A. M. (2017), Examination of a Molecular Se Beam by Mass Spectrometry with Electron Ionization. Technical Phys., 62, No. 3, pp. 359-364. doi: https://doi.org/10.1134/S106378421703029X.
  13. McFarlane, J. & LeBlanc, J.C. (1996) Fission-Product Tellurium and Cesium Telluride Chemistry Revisited. Whiteshell Laboratories Pinawa, Manitoba ROE 1L0 AECL-11333. COG-95-276-I. P.51.
  14. Franklin, J.L. & Dillard, J.G. (1969). Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions. 223-224, 228-229.
  15. Moore, C. E. (1970). Ionization Potentials and Ionization Limits Derived from the Analysis of Optical Spectra.