Title | Synthesis and structure of KInP2O7 obtained from K—In—P—Mo—O melts |
Publication Type | Journal Article |
Year of Publication | 2018 |
Authors | Kyselov, DV, Terebilenko, KV, Petrenko, OV, Baumer, VN, Slobodyanik, MS |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2018.06.091 |
Issue | 6 |
Section | Chemistry |
Pagination | 91-97 |
Date Published | 6/2018 |
Language | Ukrainian |
Abstract | The peculiarities of the crystallization from mixed phosphate — molybdate melts and the structure of $KInP_{2}O_{7}$ have been investigated. The compound crystallizes in a monoclinic system, space group $P21/c (14), a = 7.4092(1), b = 10.3990(1), c = 8.3966(1), β = 106.23(0)°, V = 621.16(36) Å^{3}$. The three-dimensional framework $[InP2O7]_{\infty}$ consists of isolated $InO_{6}$ octahedra interlinked by six pyrophosphate groups. This type of architecture of the anionic sublattice forms hexagonal channels, where potassium cations are located. Doping the host studied with rare-earth metals would open a possibility of its practical application as a base of the phosphors.
|
Keywords | crystallization, indium, pyrophosphate, single crystal, X-ray diffraction |
References:
- Pramanik, M., Salunkhe, R. R., Imura, M. & Yamauchi, Y. (2016). Phosphonate-derived nanoporous metal phosphates and their superior energy storage application. ACS Appl. Mater. Interfaces, 8, pp. 9790-9797. doi: https://doi.org/10.1021/acsami.6b01012
- Li, X., Elshahawy, A. M., Guan, C. & Wang, J. (2017). Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small, 13, No. 39, 1701530. doi: https://doi.org/10.1002/smll.201701530
- Clearfield, A. (1988). Role of ion exchange insolid-statechemistry. Chem. Rev., 88, No. 1, pp. 125-148. doi: https://doi.org/10.1021/cr00083a007
- Hagerman, M. & Poeppelmeier, K. (1998). Noncentrosymmetric oxides. Chem. Mater., 10, pp. 2753-2769. doi: https://doi.org/10.1021/cm980140w
- Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. & Adach,i G. (1993). The electrical properties of ceramic electrolytes for LiMxTi2 – x(PO4)3 + yLi2O, M = Ge, Sn, Hf , and Zr systems. Electrochem. Soc., 140, pp. 1827-1833. doi: https://doi.org/10.1002/chin.199345017
- Boilot, J., Collin, G. & Colomban, P. (1988). Relation structure-fast ion conduction in the NASICON solid solution. Solid State Chem., 73, pp.160-163. doi: https://doi.org/10.1016/0022-4596(88)90065-5
- Yongchun, Z., Wendan, C., Dongsheng, W., Hao, Z., Dagui, C., Yajing, G. & Zigui, K. (2004). Crystal and band structures, bonding, and optical properties of solid compounds of alkaline indium (III) pyrophosphates MInP2O7 (M = Na, K, Rb, Cs). Chem. Mater., 16, pp. 4150-4159. doi: https://doi.org/10.1021/cm0491330
- Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides. Acta Crystallogr. A, 32, No. 5, pp. 751-767. doi: https://doi.org/10.1107/S0567739476001551
- Sheldrick, G. (1997). SHELXL–97: Program for crystalstructure refinement. Univ. of Gottingen.
- Slobodyanik, M. S., Nagorny, P.G., Boyko, R. S. & Zaslavsky, O. M. (2013). Synthesis and crystal structure of alkali metal and gallium phosphates. Dopov. Nac. acad. nauk Ukr., No. 10, pp. 141-146 (in Ukrainian).
- Strutynska, N. Yu., Baumer, V. N., Zatovsky, I. V., Babaryk, A. A. & Slobodyanik, N. S. (2010). The triple pyrophosphate Cs3CaFe(P2O7)2. Acta Crystallogr. S, 66, pp. i39-i41. doi: https://doi.org/10.1107/S0108270110007195