Synthesis and structure of KInP2O7 obtained from K—In—P—Mo—O melts

1Kyselov, DV, 1Terebilenko, KV, Petrenko, OV, Baumer, VN, 1Slobodyanik, MS
1Taras Shevchenko National University of Kyiv
Dopov. Nac. akad. nauk Ukr. 2018, 6:91-97
https://doi.org/10.15407/dopovidi2018.06.091
Section: Chemistry
Language: Russian
Abstract: 
The peculiarities of the crystallization from mixed phosphate — molybdate melts and the structure of $KInP_{2}O_{7}$ have been investigated. The compound crystallizes in a monoclinic system, space group $P21/c (14), a = 7.4092(1), b = 10.3990(1), c = 8.3966(1), β = 106.23(0)°, V = 621.16(36) Å^{3}$. The three-dimensional framework $[InP2O7]_{\infty}$ consists of isolated $InO_{6}$ octahedra interlinked by six pyrophosphate groups. This type of architecture of the anionic sublattice forms hexagonal channels, where potassium cations are located. Doping the host studied with rare-earth metals would open a possibility of its practical application as a base of the phosphors.
Keywords: crystallization, indium, pyrophosphate, single crystal, X-ray diffraction
References: 
  1. Pramanik, M., Salunkhe, R. R., Imura, M. & Yamauchi, Y. (2016). Phosphonate-derived nanoporous metal phosphates and their superior energy storage application. ACS Appl. Mater. Interfaces, 8, pp. 9790-9797. doi: https://doi.org/10.1021/acsami.6b01012
  2. Li, X., Elshahawy, A. M., Guan, C. & Wang, J. (2017). Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small, 13, No. 39, 1701530. doi: https://doi.org/10.1002/smll.201701530
  3. Clearfield, A. (1988). Role of ion exchange insolid-statechemistry. Chem. Rev., 88, No. 1, pp. 125-148. doi: https://doi.org/10.1021/cr00083a007
  4. Hagerman, M. & Poeppelmeier, K. (1998). Noncentrosymmetric oxides. Chem. Mater., 10, pp. 2753-2769. doi: https://doi.org/10.1021/cm980140w
  5. Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. & Adach,i G. (1993). The electrical properties of ceramic electrolytes for LiMxTi2 – x(PO4)3 + yLi2O, M = Ge, Sn, Hf , and Zr systems. Electrochem. Soc., 140, pp. 1827-1833. doi: https://doi.org/10.1002/chin.199345017
  6. Boilot, J., Collin, G. & Colomban, P. (1988). Relation structure-fast ion conduction in the NASICON solid solution. Solid State Chem., 73, pp.160-163. doi: https://doi.org/10.1016/0022-4596(88)90065-5
  7. Yongchun, Z., Wendan, C., Dongsheng, W., Hao, Z., Dagui, C., Yajing, G. & Zigui, K. (2004). Crystal and band structures, bonding, and optical properties of solid compounds of alkaline indium (III) pyrophosphates MInP2O7 (M = Na, K, Rb, Cs). Chem. Mater., 16, pp. 4150-4159. doi: https://doi.org/10.1021/cm0491330
  8. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides. Acta Crystallogr. A, 32, No. 5, pp. 751-767. doi: https://doi.org/10.1107/S0567739476001551
  9. Sheldrick, G. (1997). SHELXL–97: Program for crystalstructure refinement. Univ. of Gottingen.
  10. Slobodyanik, M. S., Nagorny, P.G., Boyko, R. S. & Zaslavsky, O. M. (2013). Synthesis and crystal structure of alkali metal and gallium phosphates. Dopov. Nac. acad. nauk Ukr., No. 10, pp. 141-146 (in Ukrainian).
  11. Strutynska, N. Yu., Baumer, V. N., Zatovsky, I. V., Babaryk, A. A. & Slobodyanik, N. S. (2010). The triple pyrophosphate Cs3CaFe(P2O7)2. Acta Crystallogr. S, 66, pp. i39-i41. doi: https://doi.org/10.1107/S0108270110007195