Organization of fractal modeling

1Bol'shakov, VI, 2Volchuk, VM, 1Dubrov, Yu.I
1Prydniprovska State Academy of Civil Engineering and Architecture, Dnipropetrovsk
2Prydniprovska State Academy of Civil Engineering and Architecture, Dnipro
Dopov. Nac. akad. nauk Ukr. 2018, 6:67-72
https://doi.org/10.15407/dopovidi2018.06.067
Section: Materials Science
Language: Russian
Abstract: 

The foundations of the organization of a fractal modeling based on the criteria that reflect the key properties of modeling objects depending on the field of their application are proposed. As examples, the separate strate gies earlier published by the authors are given, which makes it impossible to include a cumbersome formalization of the general direction of fractal modeling in the article.

Keywords: fractal modeling, incompleteness of formal axiomatics, macroobject, mathematical model, microobject, multifractal, structure
References: 
  1. Mandelbrot, B. B. (1982). The fractal geometry of nature. New York, San Francisco: Freeman.
  2. Lange, O. (1965). Wholes and Parts. A general theory of system behaviour. Oxford: Pergamon Press.
  3. Takens, F. (1981). Detecting strange attractors in turbulence. Dynamical systems and turbulence. Lecture notes in mathematics. Vol. 898 (pp. 366-381). Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/BFb0091924
  4. Bolshakov, V. I. & Dubrov, Yu. I. (2002). An estimate of the applicability of fractal geometry to describe the language of qualitative transformation of materials. Dopov. Nac. akad. nauk Ukr., No. 4, pp. 116-121 (in Russian).
  5. Grinchenko, V. T., Matsypura, V. T. & Snarskiy, A. A. (2005). Introduction to nonlinear dynamics. Chaos and Fractals. Kiev: Naukova Dumka (in Russian).
  6. Bulat, A. F. & Dyrda, V. I. (2005). Fractals in geomechanics. Kiev: Naukova Dumka (in Russian).
  7. Rényi, A. (1970). Probability theory. Amsterdam: North-Holland.
  8. Bol'shakov, V. I., Volchuk, V. N. & Dubrov, Yu. I. (2017). Fractal approach to the identification of complex systems. Dopov. Nac. acad. nauk Ukr., No. 6, pp. 46-50 (in Russian). doi: https://doi.org/10.15407/dopovidi2017.06.046
  9. Bol'shakov, V. I. & Dubrov, Yu. I. (2017). Ways anthropomorphic identification systems. Visn. Nac. Acad. Nauk Ukr., No. 10, pp. 63-67 (in Ukrainian). doi: https://doi.org/10.15407/visn2017.10.062
  10. Volchuk, V. M. (2017). On the application of fractal formalism for ranging criteria of quality of multiparametric technologies. Metallofizika i Noveishie Tekhnologii, 39, No. 7, pp. 949-957 (in Russian). doi: https://doi.org/10.15407/mfint.39.07.0949
  11. Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Matematica und verwandter Systeme. Monatsh. Math. Phys., 38, pp. 173-198. doi: https://doi.org/10.1007/BF01700692
  12. Bol'shakov, Vad. I., Bol'shakov, V. I., Volchuk, V. N. & Dubrov Yu. I. (2014). A partial compensation of the incompleteness of a formal axiomatics at the identification of a metal structure. Visn. Nac. Acad. Nauk Ukr., No. 12, pp. 45-48 (in Ukrainian). doi: https://doi.org/10.15407/visn2014.04.055
  13. Bol'shakov, V. I., Volchuk, V. N. & Dubrov, Yu. I. (2008). Peculiarities of applications of the multifractal for malism to materials science. Dopov. Nac. acad. nauk Ukr., No. 11, pp. 99-107 (in Russian).
  14. Bol'shakov, V. I., Volchuk, V. N. & Dubrov, Yu. I. (2017). Topological and fractal invariants of a structure to assess the quality of a metal. Dopov. Nac. acad. nauk Ukr., No. 4, pp. 42-48 (in Russian). doi: https://doi.org/10.15407/dopovidi2017.04.042
  15. Bol'shakov, V. I. & Volchuk, V. N. (2011). Materials science aspects of applications of the wavelet-multifractal approach to the evaluation of a structure and properties of low-carbon steel. Metallofizika i Noveishie Tekhnologii, 33, No. 3, pp. 347-360 (in Russian).