Auxetic metamaterials from the position of mechanics: linear and nonlinear models

Rushchitsky, JJ
Dopov. Nac. akad. nauk Ukr. 2018, 7:46-58
https://doi.org/10.15407/dopovidi2018.07.046
Section: Mechanics
Language: Ukrainian
Abstract: 

A modern understanding of auxetic materials (auxetics) from the position of mechanics is stated. An attention is accented on the theory of elastic deformation of auxetics and experiments with them — a legitimacy of using the term "negative Poisson's ratio", a role of the internal structure of auxetics in the explanation of three mechanical phenomena (swelling under tension, strengthening under indentation, synclastic and anticlastic deformations). The new nonlinear effect is described — the same material manifests the properties of a conventional material under small deformations and the properties of an auxetic material under moderate deformations.

Keywords: auxetic metamaterial, linear and nonlinear models of elastic deformation, three basic mechanical phenomena
References: 
  1. Lim, T. C. (2015). Auxetic materials and structures. Berlin: Springer. doi: https://doi.org/10.1007/978-981-287-275-3
  2. Anurag, C., Anvesh, C.K. & Katam, S. (2015). Auxetic materials. Int. J. for Research in Appl. Science & Eng. Technology, 3, No. 4, pp. 1176-1183.
  3. Lurie, A. I. (2005). Theory of elasticity. Series: Foundations of engineering mechanics. Berlin: Springer. doi: https://doi.org/10.1007/978-3-540-26455-2
  4. Murphy, J. G. & Rogerson, G. (2002). A method to model simple tension experiments using finite elasticity theory with an application to some polyurethane foams. Int. J. Eng. Sci., 40, pp. 499-500. doi: https://doi.org/10.1016/S0020/7225(01)00079-9
  5. Ciambella, J. & Saccomandi, G. (2014). A continuum hyperelastic model for auxetic materials. Proc. Roy. Soc. A., 470, pp. 1-14. doi: https://doi.org/10.1098/rspa.2013.0691
  6. Rushchitsky, J. J. (2016). Nonlinearity of elastic deformation and moderateness of strains as a factor explaining the auxeticity of materials (plenary lecture). Abstract book of 7th Int. Conf."Auxetics and other materials and models with "negative" characteristics. Poland. Gdansk-Szymbark. September 12-16, pp. 57-59.
  7. Rushchitsky, J. J. (2017) Auxetic materials: new look from position of mechanics (plenary lecture). Materials of Int. Sci. Conf. "Modern Problems of Mechanics". Ukraine. Kyiv. August 28-30, pp. 111-112.
  8. Rushchitsky, J. J. (2012). Theory of waves in materials. Copenhagen: Ventus Publishing ApS.
  9. Rushchitsky, J. J. (2014). Nonlinear Elastic Waves in Materials. Series: Foundations of engineering mechanics. Heidelberg: Springer. doi: https://doi.org/10.1007/978-3-319-00464-8
  10. Scarpa, F., Pastorino, P., Garelli, A., Patsias, S. & Ruzzene, M. (2005). Auxetic compliant flexible PU foams: statical and dynamical properties. Phys. Status Solidi B., 242, No. 3, pp. 681-694. doi: https://doi.org/10.1002/pssb.200460386
  11. Babaee, S., Shim, J., Weaver, J.C., Chen, E.R., Patel, N. & Bertoldi, K. (2013). 3D soft metamaterials with negative Poisson's ratio. Adv. Mater., pp. 1-13. doi: https://doi.org/10.1002/adma.201301986