To a continual calculation model of stability of nanotubes with hemispherical end caps

TitleTo a continual calculation model of stability of nanotubes with hemispherical end caps
Publication TypeJournal Article
Year of Publication2018
AuthorsSemenyuk, NP, Trach, VM, Zhukova, NB
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2018.09.042
Issue9
SectionMechanics
Pagination42-50
Date Published9/2018
LanguageUkrainian
Abstract

A continual calculation model is offered to study the stability of carbon nanotubes. It is based on the non-linear theory of anisotropic shells with medium curvature. The calculations of critical states for nanotubes with hemispherical end caps and without them under different boundary conditions and different external loads are carried out.

Keywordsaxial compression, carbon nanotube, external pressure, hemispherical end caps, stability, theory of shells
References: 
  1. Guz, A. N., Rushchitsky, J. J. & Guz, I. A. (2010). Introduction in Mechanics of nanocomposites. Kiev: S.P. Timoshenko Institute of Mechanics (in Russian).
  2. Elishakoff, I. & Pentaras, D. et al. (2012). Carbon nanotubes and Nanosensors: Vibration, Buckling and Ballistic Impact. Wiley-ISTE. doi: https://doi.org/10.1002/9781118562000
  3. Ru, C. Q. (2000). Elastis buckling of singwalled carbon nanotubes ropes under hight pressure. Phis. Review, 62, pp. 10405-10408. doi: https://doi.org/10.1103/PhysRevB.62.10405
  4. Semenyuk, N. P. (2016). Stability of double-walled carbon nanotubes revisited. Int. Appl. Mech., 52, No. 1, pp. 73-81. doi: https://doi.org/10.1007/s10778-016-0734-x
  5. Shima, H. (2012). Buckling of Carbon Nanotubes: A State of the Art Review. Materials, 5, pp. 47-84. doi: https://doi.org/10.3390/ma5010047
  6. Sears, A. & Batra, B. C. (2006). Buckling of multiwalled carbon nanotubes under axial compression. Phis. Review, B 73, pp. 1-11. doi: https://doi.org/10.1103/PhysRevB.73.085410
  7. Thostenton, E. T., Li, C. & Chou, T.-W. (2005). Nanocomposites in context (review). Composites Science and Technology, 65, pp. 491-516. doi: https://doi.org/10.1016/j.compscitech.2004.11.003
  8. Wang, C. M., Zhang, Y. Y., Xiang, Y. & Reddy, J. N. (2010). Recent Studies on Buckling of Carbon Nanotubes. Appl. Mechanics Reviews, 63, No. 3, pp. 1-18. doi: https://doi.org/10.1115/1.4001936
  9. Wang, C. M., Tay, Z. Y., Chowdhuary, A. H., Duan, W. D., Zhang, Y. Y. & Silvestre, N. (2011). Examination of cylindrical shells theories for buckling of carbon nanotubes. Int. J. Struct. Stability and Dynamics, 11, No. 6, pp. 1035-1058. doi: https://doi.org/10.1142/S0219455411004464
  10. Yakobson, B. I., Brabec, C. J. & Brabec, J. (1996). Nanomechanics of carbon tubes instabilities beyond linear response. Phys. Review Letters, 76, pp. 2511-2514. doi: https://doi.org/10.1103/PhysRevLett.76.2511
  11. Bazhenov, V. A., Semenyuk, M. P. & Trach, V. M. (2010). Nonlinear deformation, stability and postbuckling behavior of anisotropic shells. Kiev: Caravela (in Ukrainian).
  12. Vanin, G. A. & Semenyuk, N. P. (1987). Stability of shells made of composite materials with imperfections. Kiev: Naukova dumka (in Russian).
  13. Lanczos, C. (1964). The Variational Principles of Mechanics. Univ. of Toronto Press.
  14. Semenyuk, N. P. & Zhukova, N. B. (2016). Stability and Post-Buckling Behavior of Orthotropic Cylindrical Shells with Local Deflection. Int. Appl. Mech., 52, No. 3, pp. 290-300. doi: https://doi.org/10.1007/s10778-016-0752-8