Influence of citrate-stabilized Cu- and Mn-nanocolloids on the growth and proliferative activity of Allium cepa L. apical meristems

Konotop, YO, Karpets, L-A, Zinchenko, AV, Lopatko, SK, Kovalenko, MS, Smirnov, OE
Dopov. Nac. akad. nauk Ukr. 2019, 1:86-92
Section: Biology
Language: Ukrainian

Using the standard Allium-test system, the phytotoxicities of Cu- and Mn-containing nanocolloids obtained in the absence and presence of a stabilizer are compared. The toxicities of the studied solutions are assessed by growth indicators of Allium cepa L. roots, and their cytotoxicity by the proliferative activity of the root meristem cells. Solutions of stabilized nanocolloids are more toxic for A. cepa L. plants in terms of the integral index of root growth, but are not cytotoxic. The differences in the phytotoxicities of stabilized and unstabilized nanoparticles depend on their properties and consist in influencing the various mechanisms of onion root growth such as mitosis and “acid” growth.

Keywords: Allium-test, Cu-nanocolloid, cytotoxicity, Mn-nanocolloid, proliferative activity

1. Liu, R. Q., Zhang, H. Y. & Lal, R. (2016). Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut., 227, рр. 1-14. doi:
2. Konotop, Ye. O., Kovalenko, M. S., Ulynets, V. Z., Meleshko, A. O., Batsmanova, L. M. & Taran N. Yu. (2014). Phytotoxicity of colloidal solutions of metal-containing nanoparticles. Cytol. Genetics, 48, No. 2, pp. 99-102. doi:
3. Tang, Y., He, R., Zhao, J., Nie, G., Xu, L. & Xing, B. (2016). Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ. Pollut., 212, pp. 605-614. doi:
4. Mirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M. & Ghassempour, A. (2013). Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotox. Environ. Safe., 88, pp. 48-54. doi:
5. Dimkpa, C. O., Calder, A., Britt, D. W., McLean, J. E., & Anderson, A. J. (2011). Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ. Pollut., 159, No. 7, pp. 1749-1756. doi:
6. Sperling, R. A. & Parak, W. J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil. Trans. R. Soc. A, 368, pp. 1333-1383. doi:
7. Lin, S. Y., Tsai, Y. T., Chen, C. C., Lin, C. M. & Chen, C. H. (2004). Two-step functionalization of neutral and positively charged thiols onto citrate-stabilized Au nanoparticles. J. Phys. Chem. B, 108, pp. 2134-2139. doi:
8. Sharma, V. K., Siskova, K. M., Zboril, R. & Gardea-Torresdey, J. L. (2014). Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Adv. Colloid Interface Sci., 204, pp. 15-34. doi:
9. Pat. 38459 UA, IPC B01J 13/00, Mother colloidal solution of metals, Lopatko, K.G., Aftandilyants, E.H., Kalenska, S.M. & Tonkha, O.L., Publ. 12.01.2009 (in Ukrainian).
10. Wilkins, D. A. (1978). The measurement of tolerance to edaphic factors by means of root length. New Phytol., 80, pp. 623-633. doi:
11. Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L. & Adam, M. (2017). Nanoparticles based on essential metals and their phytotoxicity. J. Nanobiotechnology, 15, pp. 33. doi:
12. Rayle, D. L. & Cleland, R. E. (1992). The Acid Growth Theory of auxin-induced cell elongation is alive and well. Plant Physiol., 99, No. 4, pp. 1271-1274. doi:
13. Barbez, E., Dünser, K., Gaidora, A., Lendl, T. & Busch, W. (2017). Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA., 114, No. 24, pp. 4884-4893. doi:
14. Van, N. L., Ma, C., Shang, J., Rui, Y., Liu, S. & Xing, B. (2016). Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere, 144, pp. 661–670. doi: