A sufficient condition for the sum of complemented subspaces to be complemented

Feshchenko, IS
Dopov. Nac. akad. nauk Ukr. 2019, 1:10-15
https://doi.org/10.15407/dopovidi2019.01.010
Section: Mathematics
Language: English
Abstract: 

We provide a sufficient condition for the sum of a finite number of complemented subspaces of a Banach space to be complemented. Under this condition, the formula for a projection onto the sum is given. The condition is sharp (in a certain sense). As an application, we provide a sufficient condition for the complementability of the sum of marginal subspaces in Lp.

Keywords: closed subspace, complemented subspace, marginal subspace, projection, sum of subspaces
References: 

1. Kadets, M. I. & Mityagin, B. S. (1973). Complemented subspaces in Banach spaces. Russ. Math. Surv., 28, No. 6, pp. 77-95. doi: https://doi.org/10.1070/RM1973v028n06ABEH001630
2. Moslehian, M. S. (2006). A survey of the complemented subspace problem. Trends in Mathematics, In formation Center for Mathematical Sciences, 9, No. 1, pp. 91-98.
3. Pinkus, A. (2015). Ridge functions. Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press. doi: https://doi.org/10.1017/CBO9781316408124
4. Kim, H. O., Kim, R. Y. & Lim, J. K. (2006). Characterization of the closedness of the sum of two shift-invariant subspaces. J. Math. Anal. Appl., 320, Iss. 1, pp. 381-395. doi: https://doi.org/10.1016/j.jmaa.2005.06.097
5. Bickel, P. J., Ritov, Y. & Wellner, J. A. (1991). Efficient estimation of linear functionals of a probability measure P with known marginal distributions. Ann. Statist., 19, No. 3, pp. 1316-1346. doi: https://doi.org/10.1214/aos/1176348251
6. LaVergne, A. (1979). Remark on sums of complemented subspaces. Colloq. Math., 41, No. 1, pp. 103-104. doi: https://doi.org/10.4064/cm-41-1-103-104
7. Svensson, L. (1987). Sums of complemented subspaces in locally convex spaces. Ark. Mat., 25, Iss. 1, pp. 147-153. doi: https://doi.org/10.1007/BF02384440
8. Gonzalez, M. (1994). On essentially incomparable Banach spaces. Math. Z., 215, pp. 621-629. doi: https://doi.org/10.1007/BF02571733
9. Önal, S. & Yurdakul, M. (2013). On sums of complemented subspaces. In Mathematical Forum. Vol. 7. Studies on mathematical analysis (pp. 148-152). Vladikavkaz.
10. Horn, R. A. & Johnson, C. H. (2013). Matrix analysis. 2 ed. New York: Cambridge University Press.
11. Buja, A. (1996). What criterion for a power algorithm? In Rieder, H. (Ed.). Robust Statistics, Data Analysis, and Computer Intensive Methods. Lecture Notes in Statistics, Vol. 109 (pp. 49-61). New York: Springer. doi: https://doi.org/10.1007/978-1-4612-2380-1_4
12. Rüschendorf, L. & Thomsen, W. (1998). Closedness of sum spaces and the generalized Schrödinger problem. Theory Probab. Appl., 42, No. 3, pp. 483-494. doi: https://doi.org/10.1137/S0040585X97976301
13. Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surveys, 2, pp. 107-144. doi: https://doi.org/10.1214/154957805100000104