Influence of substrate unbinding on kinetics of enzymatic catalysis

1Christophorov, LN
1Bogolyubov Institute for Theoretical Physics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2019, 1:40-46
https://doi.org/10.15407/dopovidi2019.01.040
Section: Physics
Language: Ukrainian
Abstract: 

In a minimal kinetic scheme with two conformational states of the enzyme-substrate complex, which differ in their catalytic activity, it is shown that the backward process of substrate unbinding does not always play an inhibitory role. On the contrary, increasing the unbinding rate constant up to certain values can only accelerate the enzyme turnover. Substrate concentration values necessary for making this effect possible are determined. The conclusions are equally applicable to the analysis of either ensemble or single-enzyme experimental data.

Keywords: conformational states, enzymatic reaction velocity, enzyme-substrate interaction, single macromolecules
References: 

1. Henri, V. (1902). Théorie générale de l’action de quelques diastases. C. R. Acad. Sci., 4, pp. 916-919. doi: https://doi.org/10.1016/j.crvi.2005.10.007
2. Michaelis, L. & Menten, M. L. (2013). Die Kinetik der Invertinwirkung. Biochem. Zeitschrift, 49, pp. 333-369. doi: https://doi.org/10.1016/j.febslet.2013.07.015
3. Cornish-Bowden, A. & Whitham, C. P. (Eds.). (2013). A century of Michaelis-Menten kinetics. FEBS Lett. (special issue), 587, pp. 2711-2894. doi: https://doi.org/10.1016/j.febslet.2013.07.035
4. Cornish-Bowden, A. (2015). One hundred years of Michaelis-Menten kinetics. Perspective in Science, 4, pp. 3-9. doi: https://doi.org/10.1016/j.pisc.2014.12.002
5. Monod, J., Wyman, J. & Changeaux, J.-P. (1965). On the nature of allosteric transitions: a plausible model. J. Mol. Biol., 12, pp. 88-118. doi: https://doi.org/10.1016/S0022-2836(65)80285-6
6. Rabin, B. R. (1967). Co-operative effects in enzyme catalysis: A possible kinetic model based on substrate-induced conformational isomerization. Biochem. J., 102, pp. 22c-23c. doi: https://doi.org/10.1042/bj1020022C
7. Cornish-Bowden A. & Cárdenas, M. L. (1987). Cooperativity in monomeric enzymes. J. Theor. Biol., 124, pp. 1-23. doi: https://doi.org/10.1016/S0022-5193(87)80248-5
8. Frieden, C. (1970). Kinetic aspects of regulation of metabolic processes: The hysteretic enzyme concept. J. Biol. Chem., 245, pp. 5788-5799.
9. Christophorov, L. N. (2015). Proteins as nanomachines: Hysteretic enzymes revisited. Springer Proceedings in Physics, 156, pp. 222-232. doi: https://doi.org/10.1007/978-3-319-06611-0_19
10. Kou, S. C., Cherayil, B. J., Min, W., English, B. P. & Xie X. S. (2005). Single-molecule Michaelis-Menten equations. J. Phys. Chem. B, 109, pp. 19068-19081. doi: https://doi.org/10.1021/jp051490q
11. English, B. P., Min, W., van Oijen, A. M., Lee, K. T., Luo, G., Sun, H., Cherayil, B. J., Kou, S. C. & Xie, X. S. (2006). Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat. Chem. Biol., 2, pp. 87-94. doi: https://doi.org/10.1038/nchembio759
12. Christophorov, L. N., Kharkyanen, V. N. & Berezetskaya, N. M. (2013). Molecular self-organization: A single molecule aspect. Chem. Phys. Lett., 583, pp. 170-174. doi: https://doi.org/10.1016/j.cplett.2013.08.005
13. Reuveni, S., Urbakh, M. & Klafter, J. (2014). Role of substrate unbinding in Michaelis-Menten enzymatic reactions. Proc. Natl. Acad. Sci. USA, 111, pp. 4391-4396. doi: https://doi.org/10.1073/pnas.1318122111