Boundary behavior of the Sobolev classes with critical exponent

Afanas’eva, OS
1Ryazanov, VI
2Salimov, RR
1Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Sloviansk
2Institute of Mathematics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2019, 10:3-10
https://doi.org/10.15407/dopovidi2019.10.003
Section: Mathematics
Language: Russian
Abstract: 
The conditions for outer dilation KO(x, f ) and the boundaries of domains under which the homeomorphisms of the Sobolev classes \[W^{1,1}_{loc}\] admit a continuous or homeomorphic extension to the boundary are founded.
Keywords: boundary behavior., critical exponent, outer dilation, Sobolev’s classes
References: 

1. Martio, O., Ryazanov, V., Srebro, U. & Yakubov, E. (2009). Moduli in modern mapping theory. New York: Springer.
2. Kovtonyuk, D., Petkov, I. & Ryazanov, V. (2013). On the boundary behaviour of solutions to the Beltrami equations. Complex Var. Elliptic Equ., 58, No. 5, pp. 647-663. doi: https://doi.org/10.1080/17476933.2011.603494
3. Kovtonyuk, D. A., Petkov, I. V., Ryazanov, V. I. & Salimov, R. R. (2013). Boundary behavior and the Dirichlet problem for the Beltrami equations. Algebra i analiz, 25, No. 4, pp. 101-124 (in Russian). doi: https://doi.org/10.1090/S1061-0022-2014-01308-8
4. Kovtonyuk, D., Ryazanov, V., Salimov, R. & Sevost’yanov, E. (2012). On mappings in the Orlicz—Sobolev classes. Ann. Univ. Buchar. (Math. Ser.), 3 (LXI), pp. 67-78.
5. Tengvall, V. (2014). Differentiability in the Sobolev space W1, n−1 . Calc. Var. Part. Differ. Equat., 51, No. 1-2, pp. 381-399. doi: https://doi.org/10.1007/s00526-013-0679-4
6. Afanas’eva, O. S., Ryazanov, V. I. & Salimov, R. R. (2019). Toward the theory of the Sobolev classes with critical exponent. Dopov. Nac. akad. nauk Ukr., No. 8, pp. 3-8. doi: https://doi.org/10.15407/dopovidi2019.08.003
7. Kovtonyuk, D. A. & Ryazanov, V. I. (2008). On the theory of lower Q-homeomorphisms. Ukr. mat. visnyk, 5, No. 2, pp. 159-184 (in Russian).
8. Lomako, T. V. (2009). On the extension of some generalizations of quasiconformal mappings to the boundary. Ukr. mat. zhurn., 61, No. 10, pp. 1329-1337 (in Russian). doi: https://doi.org/10.1007/s11253-010-0298-6
9. Ryazanov, V. I. & Salimov, R. R. (2007). Weakly flat spaces and boundaries in the theory of mappings. Ukr. mat. visnyk, 4, No. 2,pp. 199-234 (in Russian).
10. Kovtonyuk, D. & Ryazanov, V. (2011). On the boundary behavior of generalized quasi-isometries. J. Anal. Math., 115, pp. 103-119. doi: https://doi.org/10.1007/s11854-011-0025-8
11. Gehring, F. W. & Martio, O. (1985). Quasiextremal distance domains and extension of quasiconformal mappings. J. Anal. Math., 45, pp. 181-206. doi: https://doi.org/10.1007/BF02792549
12. Afanas’eva, E. S., Ryazanov, V. I. & Salimov, R. R. (2018). On the theory of mappings of the Sobolev class with a critical exponent. Ukr. mat. visnyk, 15, No. 2, pp. 154-176 (in Russian).
13. Gutlyanskii, V., Ryazanov, V., Srebro, U. & Yakubov, E. (2012). The Beltrami equation: a geometric approach. Developments of Mathematics, Vol. 26. New York etc.: Springer. doi: https://doi.org/10.1007/978-1-4614-3191-6