Effect of zinc treatment on growth and phytohormones accumulation in Triticum aestivum L. seedlings priming with abscisic acid

1Kosakivska, IV
Voуtenko, LV
Vasjuk, VA
1Shcherbatiuk, MM
1M. G. Kholodny Institute of Botany of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2019, 11:93-99
https://doi.org/10.15407/dopovidi2019.11.093
Section: Biology
Language: English
Abstract: 

We investigated whether the priming with abscisic acid (ABA) alters the growth and the content of endogenous phytohormones in winter wheat seedlings under zinc stress. It was shown that zinc at a concentration of 228 mg/l inhibits the growth of the root system. Under these conditions, a decrease in the content of endogenous indole-3-acetic acid (IAA), zeatin, and abscisic acid (ABA) and an increase in gibberellic acid (GA3), isopentenyladenosine (iPA) and salicylic acid (SA) took place. After the adding of 10–6 M ABA to the incubation medium, the growth of seedling roots, the level of stressful hormones ABA and SA became higher. The strategy of the adaptation of wheat seedlings to zinc stress in the presence of exogenous ABA was aimed at the activation of root growth. Changes in the phytohormones balance initiate protective mechanisms and a further adaptation of plants to a high concentration of zinc, and the treatment of grains with exogenous ABA can be used to enhance the stress resistance.

Keywords: abscisic acid, cytokinins, gibberellic acid, indole-3-acetic acid, salicylic acid, Triticum aestivum L., zinc
References: 

1. Yamaji, N., Xia, J. X., Mitani-Ueno, N., Yokosho, K. & Ma, J. F. (2013). Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol., 162, pp. 927-939. doi: https://doi.org/10.1104/pp.113.216564
2. Kaznina, N. M. & Titov, A. F. (2017). Effect of zinc deficiency and excess on the growth and photosynthesis of winter wheat. J. Stress Physiol. Biochem., 13, No. 4, pp. 88-94 (in Russian).
3. Vasyuk, V. A., Voytenko, L. V., Shcherbatiuk, M. M. &, Kosakivska, I. V. (2019). Effect of exogenous abscisic acid on seed germination and growth of winter wheat seedlings under zinc stress. J. Stress Physiol. Biochem., 15, No. 2, pp. 68-78 (in Russian).
4. Bücker-Neto, L., Paiva, A. L. S., Machado, R. D., Arenhart, R. A. & Margis-Pinheiro, M. (2017). Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol., 40, pp. 373-386. doi: https://doi.org/10.1590/1678-4685-gmb-2016-0087
5. Sytar, O., Kumari, P., Yadav, S., Brestic, M. & Rastogi, A. (2019). Phytohormone priming: regulator for heavy metal stress in plants. J. Plant Growth Regul., 38, No. 2, pp. 739-752. doi: https://doi.org/10.1007/s00344-018-9886-8
6. Voytenko, L. V. & Kosakivska, I. V. (2016). Polyfunctional phytohormone abscisic acid. Visnyk Kharkiv. nats. ahr. univ. Ser. Biology, Iss. 1, pp. 27-41 (in Ukrainian).
7. Dobrev, P. I. & Vankova, R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in saltstressed plant tissues. In Shabala, S. & Cuin, T. (Eds.), Plant salt tolerance. Methods in Molecular Biology (Methods and Protocols), Vol. 913. Totowa, NJ: Humana Press, pp. 2251-2261. doi: https://doi.org/10.1007/978-1-61779-986-0_17
8. Ludwig-Muller, J. (2011). Auxin conjugates: their role for plant development and in the evolution of land plants. J. Exp. Bot., 62, No. 6, рр. 1757-1773. doi: https://doi.org/10.1093/jxb/erq412
9. Shi, W.-G., Li, H., Liu, T.-X., Polle, A., Peng, C.-H. & Luo, Z.-B. (2015). Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus canescens exposed to excess zinc. Plant, Cell Environ., 38, pp. 207-223. doi: https://doi.org/10.1111/pce.12434
10. Sofo, A., Vitti, A., Nuzzaci, M. & Tataranni, G. (2013). Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context. Physiol. Plant., 149, pp. 487-498. doi: https://doi.org/10.1111/ppl.12050
11. Gantait, S., Sinniah, U. R., Ali, M. N. & Sahu, N. C. (2015). Gibberellins — a multifaceted hormone in plant growth regulatory network. Curr. Protein Pept. Sci., 16, No. 5, pp. 406-412. doi: https://doi.org/10.2174/1389203716666150330125439
12. Atici, Ö., Ağar, G. & Battal, P. (2005). Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol. Plant., 49, Iss. 2, pp. 215-222. doi: https://doi.org/10.1007/s10535-005-5222-9
13. Wybouw, B. & De Rybel, B. (2019). Cytokinin — a developing story. Trends in plant. Science, 24, Iss. 2, pp. 177-185. doi: https://doi.org/10.1016/j.tplants.2018.10.012
14. Dempsey, D. A. & Klessig, D. F. (2017). How does the multifaceted plant hormone salicylic acid combat disea se in plants and are similar mechanisms utilized in humans? BMC Biol., 15. doi: https://doi.org/10.1186/s12915-017-0364-8
15. Trinh, N.N., Huang, T.L., Chi, W.C., Fu, S.F., Chen, C.C. & Huang, H.J. (2014). Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol. Plant., 150, pp. 205-224. doi: https://doi.org/10.1111/ppl.12088