Response of red blood cells to the alteration of the temperatureosmotic conditions of a medium in the presence of glycerol

Chabanenko, OO
1Orlova, NV
1Shpakova, NM
1Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv
Dopov. Nac. akad. nauk Ukr. 2019, 2:84-89
https://doi.org/10.15407/dopovidi2019.02.084
Section: Biology
Language: Russian
Abstract: 

It has been shown that the presence of glycerol at different stages of posthypertonic shock makes an additional contribution to the development of hemolysis of red blood cells; the main changes in the level of posthypertonic lysis occur in the temperature interval from 5 to 30 °C. It has been found that, as the NaCl concentration in the rehydration medium increases, a significant decrease of the damage of human red blood cells is observed.

Keywords: glycerol, posthypertonic lysis, posthypertonic shock, red blood cells
References: 

1. Acker, J. P., Marks, D. C. & Sheffield, W. P. (2016). Quality assessment of established and emerging blood components for transfusion. J. Blood Transfus., 2016, 4860284. doi: https://doi.org/10.1155/2016/4860284
2. Henkelman, S., Lagerberg, J. W., Graaff, R., Rakhorst, G. & Oeveren, W. (2010). The effects of cryopreservation on red blood cell rheologic properties. Transfusion. 50, No. 11, pp. 2393-2401. doi: https://doi.org/10.1111/j.15372995.2010.02730.x
3. Agranenko, V. A., VinogradFinkel’, F. R., Fedorova, L. I. et al. (1980). Methods of longterm frozen storage of red blood cells intended for transfusions: Methodical recommendation. Moscow: MZ SSSR (in Russian).
4. Semenova, N. V., Fedorova, L. I., Vinogradov, V. L., Batyshev, T. V. & Sukhanov, Yu. S. (1986). A comparative study of cryopreserved retrokonektado for different methods of laundering. Gematologiya i transfuziologiya, No. 10, pp. 42-52 (in Russian).
5. Lusianti, R. E., Benson, J. D., Acker, J. P. & Higgins, A. Z. (2013). Rapid removal of glycerol from fro zenthawed red blood cells. Biotechnol. Prog., 29, No. 3, pp. 609-620. doi: https://doi.org/10.1002/btpr.1710
6. Lelkens, C. C., de Korte, D. & Lagerberg, J. W. (2015). Prolonged postthaw shelf life of red cells frozen without prefreeze removal of excess glycerol. Vox Sang., 108, No. 3, pp. 219-225. doi: https://doi.org/10.1111/vox.12219
7. Semionova, E. A., Iershova, N. A., Orlova, N. V. & Shpakova, N. M. (2016). Hypotonic Lysis of Mammalian Erythrocytes in Chlorpromazine Presence. East. Eur. Sci. J., No. 2, pp. 7-17 (in Russian). doi: https://doi.org/10.12851/EESJ201604C01ART01
8. Semionova, Ye. A., Yershova, N. A., Yershov, S. S., Orlova, N. V. & Shpakova, N. M. (2016). Peculiarities of posthypertonic lysisin erythrocytes of several mammals. Probl. Cryobiol. Cryomed., 26, No. 1, pp. 73-83 (in Russian). doi: https://doi.org/10.15407/cryo26.01.073
9. Gordiyenko, O. I., Kovalenko, S. Ye. & Kovalenko, I. F. (2012). Mechanisms of glycerol permeability through the membrane of human erythrocytes. Probl. Cryobiol. Cryomed., 22, No. 4, pp. 389-397 (in Ukrainian).
10. Muldrew, K. (2008). The saltingin hypothesis of posthypertonic lysis. Cryobiology, 57, No. 3, pp. 251-256. doi: https://doi.org/ 10.1016/j.cryobiol.2008.09.007