Aluminum nanoscales as hormetic response effectors in Fagopyrum esculentum seedlings

Smirnov, OE
Karpets, LA
Zinchenko, AV
Kovalenko, MS
Konotop, YO
Schwartau, VV
Taran, NY
Dopov. Nac. akad. nauk Ukr. 2019, 2:90-95
Section: Biology
Language: English

Aluminum (Al) nanoscales have been applied in many areas of production industries to produce cosmetic fillers, packaging materials, cutting tools, glass products, metal products, semiconductor materials, plastics, etc. Several studies have demonstrated the contradictory data for positive and negative effects of Al nanoscales on plants. The total length of seedlings grown for 21 days and the relative water content are used to determine the stimulating effects. In addition, the enhancement effect of Al nanoscales on photosynthetic pigments and the total phenolic and anthocyanin contents are determined. The growth stimulation and increase of the content of photosynthetic pigments are observed at the addition of 50 and 250 mg/L of Al nanoscales. Plant growth stimuli and the fixed bene ficial action of Al nanoscales on morphofunctional traits at physiological and biochemical levels are interpreted as the hormesis phenomenon.

Keywords: Al nanoscales, buckwheat seedlings, colloidal solution, hormesis

1. Rastogi, A., Zivcak, M., Sytar, O., Kalaji, K. M., He, X., Mbarki, S. & Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: a critical review. Front. Chem., 5, 78. doi:
2. Burklew, C. E., Ashlock, J., Winfrey, W. B. & Zhang, B. (2012). Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One, 7, No. 5, e34783. doi:
3. Jampílek, J. & Králová, K. (2017). Nanomaterials for delivery of nutrients and growth promoting compounds to plants. In Prasad, R., Kumar, M., Kumar, V. (Eds). Nanotechnology. An Agricultural Paradigm (pp. 117-227). Springer Nature Singapore Pte Ltd. doi:
4. Pat. 38459 UA, IPC B01J 13/00, Mother colloidal solution of metals, Lopatko, K.G., Aftandilyants, E.H., Kalenska, S.M. & Tonkha, O.L., Publ. 12.01.2009 (in Ukrainian).
5. Munzuroglu, O. & Geckil, H. (2002). Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch. Environ. Contam. Toxicol., 43, pp. 203-213. doi:
6. Lichtethaler, H. K. (1987). Chlorophylls and pigments of photosynthetic biomembranes. Methods Enzymol., 148, pp. 350-82. doi:
7. Bobo, G., DavidovPardo, G., Arroqui, C., Vírseda, P., MarínArroyo, M. R. & Navarro, M. (2015). Intralaboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric method. J. Sci. Food Agric., 95, No. 1, pp. 204-209. doi:
8. Li, X., Kim, J. K., Park, S. Y., Zhao, S., Kim, Y. B., Lee, S. & Park, S. U. (2014). Comparative analysis of flavonoids and polar metabolite profiling of Tannooriginal and Tannohigh rutin buckwheat. J. Agric. Food Chem., 62, No. 12, pp. 2701-2708. doi:
9. Smirnov, O. E., Kosyan, A. M., Kosyk, O. I. & Taran, N. Y. (2015). Response of phenolic metabolism induced by aluminium toxicity in Fagopyrum esculentum Moench. Plants. Ukr. Biochem. J., 87, pp. 129-135. doi:
10. Shen, R. & Ma, J. F. (2001). Distribution and mobility of aluminium in an Alaccumulating plant Fagopyrum esculentum Moench. J. Exp. Bot., 52, No. 361, pp. 1683-1687.
11. Srinivasa Rao, N. K., Shivashankara, K. S. & Laxman, R. H. (2016). Abiotic stress physiology of horticultural crops. New Delhi: Springer. doi:
12. Sun, Y. P., Li, X. Q., Cao, J., Zhang, W. X. & Wang, H. P. (2006). Characterization of zerovalent iron nanoparticles. Adv. Colloid Interface Sci., 120, pp. 47-56. doi:
13. Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J. Environ. Stud., 15, No. 4, pp. 523-530.
14. Calabrese, E. J. & Blain, R. B. (2009). Hormesis and plant biology. Environ. Pollut., 157, pp. 42-48. doi: