Asymptotics of solutions of nonlinear Beltrami equations

1Klishchuk, BA
1Salimov, RR
1Stefanchuk, MV
1Institute of Mathematics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2019, 2:17-22
Section: Mathematics
Language: Russian

Regular homeomorphic solutions of the nonlinear Beltrami equation for the power and logarithmic orders of growth are investigated. Solutions showing the accuracy of the growth order in the found estimates are constructed.

Keywords: Beltrami equation, mappings of the Sobolev class, nonlinear Beltrami equation, regular homeomorphism

1. Golberg, A., Salimov, R. & Stefanchuk, M. (2018). Complex Anal. Oper. Theory. doi:
2. Lavrent’ev, M. A. & Shabat, B. V. (1957). The geometric properties of solutions of nonlinear systems of partial differential equations. Dokl. ÀN SSSR, 112, No. 5, pp. 810811 (in Russian).
3. Lavrent’ev, M. A. (1947). A general problem of the theory of quasiconformal representation of plane regions. Mat. sbornik, 21, No. 2, pp. 285320 (in Russian).
4. Lavrent’ev, M. A. (1962). The variational method in boundaryvalue problems for systems of equations of elliptic type. Moscow: Izdvo AN SSSR (in Russian).
5. Lehto, O. & Virtanen, K. (1973). Quasiconformal Mappings in the Plane. New York: Springer. doi:
6. Gutlyanskii, V. Ya., Nesmelova, O. V. & Ryazanov, V. I. (2018). Semilinear equations in the plane with measu rable data. Dopov. Nac. akad. nauk Ukr., No. 2, pp. 1218. doi:
7. Gutlyanskii, V. Ya., Nesmelova, O. V. & Ryazanov, V. I. (2017). On the Dirichlet problem for quasilinear Poisson equations. Pratsi IPPM NAN Ukrainy, 31, No. 2, pp. 2837.
8. Gutlyanskii, V., Nesmelova, O. & Ryazanov, V. (2017). On quasiconformal maps and semilinear equations in the plane. Ukr. Mat. Visn., 14, No. 2, ðð. 161191.
9. Gutlyanskii, V., Nesmelova, O. & Ryazanov, V. (June 2018). The Dirichlet problem for semilinear equations. arXiv: 1804.05875v9 [math.CV].