Chromferide in impact melt rocks of the El’gygytgyn crater in Chukotka (Russia)

Gurov, YP
Permiakov, VV
Dopov. Nac. akad. nauk Ukr. 2019, 3:72-77
https://doi.org/10.15407/dopovidi2019.03.072
Section: Geosciences
Language: Russian
Abstract: 

The accessory mineralization of chromferide is discovered in impact melt rocks of the El’gygytgyn crater in Chukotka. Impact melt rocks are massive vesicular rocks with a glassy matrix and numerous clasts of shock metamorphosed rocks and minerals of the crater target. Chromferide was crystallized in micronsized contraction cracks and on the inner surface of gas vesicles. The composition of chromferite in the impact melt rocks corresponds to the composition of reference chromferide and is characterized by the formula Fe1.5Cr0.2 or Fe7Cr1. An enrichment of the impact melt rocks of the El’gygytgyn crater in chromium from impacting body was determined earlier. It is supposed that the impactor matter was the main source of chromium in the composition of chromferide.

Keywords: asteroid, chromferide, contraction ñrack, impact crater, impact melt rock
References: 

1. Novgorodova, M. I. (1983). Native metals in hydrothermal ores. Moskow: Nauka (in Russian).
2. Novgorodova, M. I., Gorschkov, A. I., Trubkin, N. V., Tsepin, A. I. & Dmitrieva, M. T. (1986). New natural Intermetallic compounds of iron and chromium — chromferide and ferchromide. Zap. Vsesoyuz. Mineralog. Obva, 115, Iss. 3, pp. 355-360 (in Russian).
3. Gurov, E. P., Valter, A. A., Gurova, E. P. & Serebrennikov, A. I. (1978). Impact meteorite crater El’gygytgyn in Chukotka. Dokl. AN SSSR, 240, pp.1407-1410 (in Russian).
4. Gurov, E. P. & Gurova, E. P. (1991). Geological structure and rock composition of impact structures. Kiev: Naukova Dumka (in Russian).
5. Gurov, E. P. & Koeberl, C. (2004). Shocked rocks and impact glasses from the El’gygytgyn impact structure, Russia. Meteorit. Planet. Sci., 39, pp. 1495-1508. doi: https://doi.org/10.1111/j.1945-5100.2004.tb00124.x
6. Layer, P. V. (2000). 40Argon/39Argonage of the El’gygytyn event, Chukotka, Russia. Meteorit. Planet. Sci., 35, pp. 591-599. doi: https://doi.org/10.1111/j.1945-5100.2000.tb01439.x
7. Gurov, E. P., Gurova, E. P. & Ryabenko, V. A. (1980). Impactites and glassy bombs of the El’gygytgyn crater in Chukotka. Izv. AN SSSR. Ser. geol., No. 1, pp. 54-61 (in Russian).
8. Koeberl, C., Pittarello, L., Reimold, W. U., Raschke, U., BrighamGrette, J., Melles, M. & Minyuk, M. (2013). El’gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project. Meteorit. Planet. Sci., 48, pp. 1108-1129. doi: https://doi.org/10.1111/maps.12146
9. Pittarello, L. & Koeberl, C. (2013). Petrography of impact glasses and melt breccias from the El’gygytgyn structure, Russia. Meteorit. Planet. Sci., 48, pp. 12361-250. doi: https://doi.org/10.1111/maps.12048
10. Val’ter, A. A., Barchuk, I. F., Bulkin, V. S., Ogorodnic, A. F. & Kotishevskaya, E. Y. (1982). The El’gygytgyn meteorite: Probable composition. Sov. Astronom. Let., 8, pp. 115-120.
11. Kapustkina, I. G., Feldman, V. I. & Kolesov, G. M. (1985). Behaviour of some meteoritic indicator elements in process of impact melt degassing (abstract). Lunar Planet. Sci. Conf., 16, p. 422.
12. Goderis, S., Wittmann, A., Zaiss, J., Elburg, M., Ravizza, G., Vanhaecke, F., Deutsch, A. & Claeys, P. (2013). Testing the ureilite projectile hypothesis for the El’gygytgyn impact: Determination of siderophile element abundance and Os isotope ratios in ICDR drill core samples and melt rocks. Meteorit. Planet. Sci., 48, pp. 1296-1324. doi: https://doi.org/10.1111/maps.12047
13. Foriel, J., Moynier, F., Schulz, T. & Koeberl, C. (2013). Chromium isotope anomaly in an impactite sample from the El’gygytgyn structure, Russia: Evidence for a ureilite projectile? Meteorit. Planet. Sci., 48, pp. 13391-350. doi: https://doi.org/10.1111/maps.12116